PAT_1072 Gas Station
1072. Gas Station (30)
A gas station has to be built at such a location that the minimum distance between the station and any of the residential housing is as far away as possible. However it must guarantee that all the houses are in its service range.
Now given the map of the city and several candidate locations for the gas station, you are supposed to give the best recommendation. If there are more than one solution, output the one with the smallest average distance to all the houses. If such a solution is still not unique, output the one with the smallest index number.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 positive integers: N (<= 103), the total number of houses; M (<= 10), the total number of the candidate locations for the gas stations; K (<= 104), the number of roads connecting the houses and the gas stations; and DS, the maximum service range of the gas station. It is hence assumed that all the houses are numbered from 1 to N, and all the candidate locations are numbered from G1 to GM.
Then K lines follow, each describes a road in the format P1 P2 Dist where P1 and P2 are the two ends of a road which can be either house numbers or gas station numbers, and Dist is the integer length of the road.
Output Specification:
For each test case, print in the first line the index number of the best location. In the next line, print the minimum and the average distances between the solution and all the houses. The numbers in a line must be separated by a space and be accurate up to 1 decimal place. If the solution does not exist, simply output “No Solution”.
Sample Input 1:
4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2
Sample Output 1:
G1
2.0 3.3
Sample Input 2:
2 1 2 10
1 G1 9
2 G1 20
Sample Output 2:
No Solution ==============================src====================================
dijikstra 方法计算图中 单源最短路径
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <math.h> using namespace std ; const int maxn = + + ;
struct HeapNode
{
int d , u ;
bool operator < ( const HeapNode &rhs) const
{
return d > rhs.d ;
}
} ; struct Edge
{
int from, to ,dist ;
} ; struct Dijkstra
{
int n , m ;
vector <Edge> edges ;
vector <int> G[maxn] ; bool done[maxn] ;
int d[maxn] ;
int p[maxn] ; void init ( int n )
{
int i ; this->n = n ;
for ( i = ; i < n ; i++ )
{
G[i].clear() ;
} edges.clear() ; } void AddEdge ( int from , int to , int dist )
{
Edge e ;
int m ; e.from = from ;
e.to = to ;
e.dist = dist ; edges.push_back(e) ; m = edges.size() ; G[from].push_back( m- ) ;
} void dijkstra ( int s )
{
priority_queue <HeapNode> Q ;
HeapNode node ; for ( int i = ; i < n ; i++ )
d[i] = maxn ; d[s] = ; memset(done , , sizeof(done) ) ; node.d = ;
node.u = s ; Q.push( (HeapNode) node) ; while( !Q.empty() )
{
node = Q.top () ;
Q.pop() ; int u = node.u ; if ( done[u] ) continue ; done[u] = true ; for ( int i = ; i < G[u].size() ; i++ )
{
Edge &e = edges[G[u][i]] ; if ( d[e.to] > (d[u] + e.dist) )
{
d[e.to] = d[u]+e.dist ;
p[e.to] = G[u][i] ; node.d = d[e.to] ;
node.u = e.to ;
Q.push(node) ; }
}
}
} } ; //set global vars
int N , M , K , Ds ;
Dijkstra Graph ; int charToInt (char *p )
{
int len ;
int sum = ;
int i ;
len = strlen(p) ; if (p[] == 'G')
{
for (i= ; i < len ; i++)
{
sum += (int)(p[i]-'')*(int)pow(,len-i- ) ;
}
sum += N ;
} else
{ for (i= ; i < len ; i++)
{
sum += (int)(p[i]-'')*(int)pow(,len-i- ) ;
}
}
return sum ;
} void Input()
{
int i ;
char line[][] ;
int x,y,v ; scanf("%d%d%d%d", &N,&M,&K,&Ds) ; Graph.init(N+M) ; for ( i = ; i < K ; i++ )
{
scanf("%s",line[]) ;
scanf("%s",line[]) ;
scanf("%s",line[]) ; x = charToInt(line[]) ;
y = charToInt(line[]) ;
v = charToInt(line[]) ; Graph.AddEdge(x- ,y- ,v ) ;
Graph.AddEdge(y- ,x- , v ) ;
} } int main ( void )
{
int i , j ; double min; bool flag = true ; double sum = ; Input() ; for ( i = N ; i < N+M ; i++ )
{
Graph.dijkstra( i ) ;
sum = ;
flag = true ;
min = maxn ; for ( j = ; j < N ; j++ )
{
if ( Graph.d [j] <= Ds )
{
sum += Graph.d[j] ;
if ( min > Graph.d[j] )
min = Graph.d[j] ;
}
else
{
flag = false ;
break ;
}
} if ( flag )
{
sum = sum/N ;
printf("G%d\n",i+-N) ;
printf("%.1f %.1f", min , sum) ; return ;
} } printf("No Solution") ; return ;
}
----------------------------another version----------------------------------------
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <math.h> using namespace std ; const int maxn = + + ;
struct HeapNode
{
int d , u ;
bool operator < ( const HeapNode &rhs) const
{
return d > rhs.d ;
}
} ; struct SolutionNode
{
double aver, min ;
int Gx ; bool operator < ( const SolutionNode &rhs) const
{ if ( aver > rhs.aver )
return true ;
else if ( aver == rhs.aver )
{
return Gx > rhs.aver ;
}
}
} ; struct Edge
{
int from, to ,dist ;
} ; struct Dijkstra
{
int n , m ;
vector <Edge> edges ;
vector <int> G[maxn] ; bool done[maxn] ;
int d[maxn] ;
int p[maxn] ; void init ( int n )
{
int i ; this->n = n ;
for ( i = ; i < n ; i++ )
{
G[i].clear() ;
} edges.clear() ; } void AddEdge ( int from , int to , int dist )
{
Edge e ;
int m ; e.from = from ;
e.to = to ;
e.dist = dist ; edges.push_back(e) ; m = edges.size() ; G[from].push_back( m- ) ;
} void dijkstra ( int s )
{
priority_queue <HeapNode> Q ;
HeapNode node ; for ( int i = ; i < n ; i++ )
d[i] = maxn ; d[s] = ; memset(done , , sizeof(done) ) ; node.d = ;
node.u = s ; Q.push( (HeapNode) node) ; while( !Q.empty() )
{
node = Q.top () ;
Q.pop() ; int u = node.u ; if ( done[u] ) continue ; done[u] = true ; for ( int i = ; i < G[u].size() ; i++ )
{
Edge &e = edges[G[u][i]] ; if ( d[e.to] > (d[u] + e.dist) )
{
d[e.to] = d[u]+e.dist ;
p[e.to] = G[u][i] ; node.d = d[e.to] ;
node.u = e.to ;
Q.push(node) ; }
}
}
} } ; //set global vars int N , M , K , Ds ;
Dijkstra Graph ; int charToInt (char *p )
{
int len ;
int sum = ;
int i ;
len = strlen(p) ; if (p[] == 'G')
{
for (i= ; i < len ; i++)
{
sum += (int)(p[i]-'')*(int)pow(,len-i- ) ;
}
sum += N ;
} else
{ for (i= ; i < len ; i++)
{
sum += (int)(p[i]-'')*(int)pow(,len-i- ) ; }
}
return sum ;
} void Input()
{
int i ;
char line[][] ;
int x,y,v ; scanf("%d%d%d%d", &N,&M,&K,&Ds) ; Graph.init(N+M) ; for ( i = ; i < K ; i++ )
{
scanf("%s",line[]) ;
scanf("%s",line[]) ;
scanf("%s",line[]) ; x = charToInt(line[]) ;
y = charToInt(line[]) ;
v = charToInt(line[]) ; Graph.AddEdge(x- ,y- ,v ) ;
Graph.AddEdge(y- ,x- , v ) ;
} } void Output()
{
int i , j ;
bool flag ;
priority_queue<SolutionNode> q ; for ( i = N ; i < N+M ; i++ )
{ Graph.dijkstra(i) ;
SolutionNode node ; node.aver= ;
node.min = maxn ;
node.Gx = i-N+;
flag = true ; for ( j = ; j < N ; j++ )
{
if ( Graph.d[j] <= Ds )
{
node.aver += Graph.d[j] ;
if ( node.min > Graph.d[j] )
node.min = Graph.d[j] ;
}
else
{
flag = false ;
break ;
}
} if ( flag )
{
node.aver = node.aver / N ; q.push(node) ; printf( "now q length :%d\n" , q.size() ) ;
} } if ( q.empty() )
{
printf("No Solution") ;
return ;
} else
{
SolutionNode node = q.top() ;
printf("G%d\n", node.Gx) ;
printf("%.1f %.1f", node.min , node.aver) ;
return ;
}
} int main ( void )
{ Input() ;
Output() ; return ; }
个人觉得这道题出的有一点问题,
从题中大意可知,
如果存在着 多个满足 解决方案的 Gx 点的话,
首先 要选取平均距离 为最小的 Gx , 可是从例子可以看出 G1 G2 中平均距离最小的应该是 G2,而并非是 G1。
或许是LZ理解的有误,先存档一下, 等有时间再通关。
PAT_1072 Gas Station的更多相关文章
- [LeetCode] Gas Station 加油站问题
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
- PAT 1072. Gas Station (30)
A gas station has to be built at such a location that the minimum distance between the station and a ...
- Leetcode 134 Gas Station
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
- 【leetcode】Gas Station
Gas Station There are N gas stations along a circular route, where the amount of gas at station i is ...
- [LeetCode] Gas Station
Recording my thought on the go might be fun when I check back later, so this kinda blog has no inten ...
- 20. Candy && Gas Station
Candy There are N children standing in a line. Each child is assigned a rating value. You are giving ...
- LeetCode——Gas Station
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
- Gas Station
Description: There are N gas stations along a circular route, where the amount of gas at station i i ...
- Gas Station [LeetCode]
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
随机推荐
- 自动化测试实施的几个idea
UI检查.测试的一个idea 在电子商务网站中, 为达到较好的用户体验, 可能页面上会有大量的UI设计,一堆css.ajax效果等,敏捷开发中, UI变动更是带来了测试的苦恼.对于回归组catch U ...
- Curl之Post Json
curl Post Json $ curl -i -X POST -H "'Content-type':'application/x-www-form-urlencoded', 'chars ...
- qtcreator 与 opencv
参考: http://blog.csdn.net/skeeee/article/details/10585429
- Lua中实现队列(高效方式)
转自http://www.cnblogs.com/stephen-liu74/archive/2012/06/25/2417894.html 在Lua中实现队列的简单方法是使用table库函数inse ...
- [未解出,hzwer]挖掘机
挖掘机(dig.*) 背景 附中机房谁最虚?高二一班***!感觉很顺,是吧? 题目描述 今天,丧尸czy开着挖掘机去上学(……).但是他发现他的mz满天下,所以一路上他碰到了好多他的mz.一开始他以1 ...
- 【原】Redis入门教程
最近在学习Redis,写几篇文章记录一下学习过程:Redis入门教程. 1.Redis基本概念 Redis Redis Keys Redis 基本数据类型 Redis基本操作 遍历操作 Pub-Sub ...
- 【JS】Intermediate3:AJAX
1.load new content into a page without a full reload XML HTTP Request (XHR) To retrieve new content ...
- oracle创建库和表
SQL> create user midamtemp identified by ty1234 default tablespace midamtemp; User created. --分配用 ...
- 使用 Windows PowerShell 管理Windows Azure映像
你可以使用 Azure PowerShell 模块中的 cmdlet 管理可供你的 Azure 订阅使用的映像.这包括 Azure 提供的映像以及你上载的映像.对于某些映像任务,你还可以使用 Azur ...
- globalfifo设备驱动
把globalmem中的全局内存变成一个FIFO,只有当FIFO中有数据的时候(即有进程把数据写到这个FIFO而且没有被读进程读空),读进程才能把数据读出,而且读取后的数据会从globalmem的全局 ...