PAT_1072 Gas Station
1072. Gas Station (30)
A gas station has to be built at such a location that the minimum distance between the station and any of the residential housing is as far away as possible. However it must guarantee that all the houses are in its service range.
Now given the map of the city and several candidate locations for the gas station, you are supposed to give the best recommendation. If there are more than one solution, output the one with the smallest average distance to all the houses. If such a solution is still not unique, output the one with the smallest index number.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 positive integers: N (<= 103), the total number of houses; M (<= 10), the total number of the candidate locations for the gas stations; K (<= 104), the number of roads connecting the houses and the gas stations; and DS, the maximum service range of the gas station. It is hence assumed that all the houses are numbered from 1 to N, and all the candidate locations are numbered from G1 to GM.
Then K lines follow, each describes a road in the format P1 P2 Dist where P1 and P2 are the two ends of a road which can be either house numbers or gas station numbers, and Dist is the integer length of the road.
Output Specification:
For each test case, print in the first line the index number of the best location. In the next line, print the minimum and the average distances between the solution and all the houses. The numbers in a line must be separated by a space and be accurate up to 1 decimal place. If the solution does not exist, simply output “No Solution”.
Sample Input 1:
4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2
Sample Output 1:
G1
2.0 3.3
Sample Input 2:
2 1 2 10
1 G1 9
2 G1 20
Sample Output 2:
No Solution ==============================src====================================
dijikstra 方法计算图中 单源最短路径
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <math.h> using namespace std ; const int maxn = + + ;
struct HeapNode
{
int d , u ;
bool operator < ( const HeapNode &rhs) const
{
return d > rhs.d ;
}
} ; struct Edge
{
int from, to ,dist ;
} ; struct Dijkstra
{
int n , m ;
vector <Edge> edges ;
vector <int> G[maxn] ; bool done[maxn] ;
int d[maxn] ;
int p[maxn] ; void init ( int n )
{
int i ; this->n = n ;
for ( i = ; i < n ; i++ )
{
G[i].clear() ;
} edges.clear() ; } void AddEdge ( int from , int to , int dist )
{
Edge e ;
int m ; e.from = from ;
e.to = to ;
e.dist = dist ; edges.push_back(e) ; m = edges.size() ; G[from].push_back( m- ) ;
} void dijkstra ( int s )
{
priority_queue <HeapNode> Q ;
HeapNode node ; for ( int i = ; i < n ; i++ )
d[i] = maxn ; d[s] = ; memset(done , , sizeof(done) ) ; node.d = ;
node.u = s ; Q.push( (HeapNode) node) ; while( !Q.empty() )
{
node = Q.top () ;
Q.pop() ; int u = node.u ; if ( done[u] ) continue ; done[u] = true ; for ( int i = ; i < G[u].size() ; i++ )
{
Edge &e = edges[G[u][i]] ; if ( d[e.to] > (d[u] + e.dist) )
{
d[e.to] = d[u]+e.dist ;
p[e.to] = G[u][i] ; node.d = d[e.to] ;
node.u = e.to ;
Q.push(node) ; }
}
}
} } ; //set global vars
int N , M , K , Ds ;
Dijkstra Graph ; int charToInt (char *p )
{
int len ;
int sum = ;
int i ;
len = strlen(p) ; if (p[] == 'G')
{
for (i= ; i < len ; i++)
{
sum += (int)(p[i]-'')*(int)pow(,len-i- ) ;
}
sum += N ;
} else
{ for (i= ; i < len ; i++)
{
sum += (int)(p[i]-'')*(int)pow(,len-i- ) ;
}
}
return sum ;
} void Input()
{
int i ;
char line[][] ;
int x,y,v ; scanf("%d%d%d%d", &N,&M,&K,&Ds) ; Graph.init(N+M) ; for ( i = ; i < K ; i++ )
{
scanf("%s",line[]) ;
scanf("%s",line[]) ;
scanf("%s",line[]) ; x = charToInt(line[]) ;
y = charToInt(line[]) ;
v = charToInt(line[]) ; Graph.AddEdge(x- ,y- ,v ) ;
Graph.AddEdge(y- ,x- , v ) ;
} } int main ( void )
{
int i , j ; double min; bool flag = true ; double sum = ; Input() ; for ( i = N ; i < N+M ; i++ )
{
Graph.dijkstra( i ) ;
sum = ;
flag = true ;
min = maxn ; for ( j = ; j < N ; j++ )
{
if ( Graph.d [j] <= Ds )
{
sum += Graph.d[j] ;
if ( min > Graph.d[j] )
min = Graph.d[j] ;
}
else
{
flag = false ;
break ;
}
} if ( flag )
{
sum = sum/N ;
printf("G%d\n",i+-N) ;
printf("%.1f %.1f", min , sum) ; return ;
} } printf("No Solution") ; return ;
}
----------------------------another version----------------------------------------
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <math.h> using namespace std ; const int maxn = + + ;
struct HeapNode
{
int d , u ;
bool operator < ( const HeapNode &rhs) const
{
return d > rhs.d ;
}
} ; struct SolutionNode
{
double aver, min ;
int Gx ; bool operator < ( const SolutionNode &rhs) const
{ if ( aver > rhs.aver )
return true ;
else if ( aver == rhs.aver )
{
return Gx > rhs.aver ;
}
}
} ; struct Edge
{
int from, to ,dist ;
} ; struct Dijkstra
{
int n , m ;
vector <Edge> edges ;
vector <int> G[maxn] ; bool done[maxn] ;
int d[maxn] ;
int p[maxn] ; void init ( int n )
{
int i ; this->n = n ;
for ( i = ; i < n ; i++ )
{
G[i].clear() ;
} edges.clear() ; } void AddEdge ( int from , int to , int dist )
{
Edge e ;
int m ; e.from = from ;
e.to = to ;
e.dist = dist ; edges.push_back(e) ; m = edges.size() ; G[from].push_back( m- ) ;
} void dijkstra ( int s )
{
priority_queue <HeapNode> Q ;
HeapNode node ; for ( int i = ; i < n ; i++ )
d[i] = maxn ; d[s] = ; memset(done , , sizeof(done) ) ; node.d = ;
node.u = s ; Q.push( (HeapNode) node) ; while( !Q.empty() )
{
node = Q.top () ;
Q.pop() ; int u = node.u ; if ( done[u] ) continue ; done[u] = true ; for ( int i = ; i < G[u].size() ; i++ )
{
Edge &e = edges[G[u][i]] ; if ( d[e.to] > (d[u] + e.dist) )
{
d[e.to] = d[u]+e.dist ;
p[e.to] = G[u][i] ; node.d = d[e.to] ;
node.u = e.to ;
Q.push(node) ; }
}
}
} } ; //set global vars int N , M , K , Ds ;
Dijkstra Graph ; int charToInt (char *p )
{
int len ;
int sum = ;
int i ;
len = strlen(p) ; if (p[] == 'G')
{
for (i= ; i < len ; i++)
{
sum += (int)(p[i]-'')*(int)pow(,len-i- ) ;
}
sum += N ;
} else
{ for (i= ; i < len ; i++)
{
sum += (int)(p[i]-'')*(int)pow(,len-i- ) ; }
}
return sum ;
} void Input()
{
int i ;
char line[][] ;
int x,y,v ; scanf("%d%d%d%d", &N,&M,&K,&Ds) ; Graph.init(N+M) ; for ( i = ; i < K ; i++ )
{
scanf("%s",line[]) ;
scanf("%s",line[]) ;
scanf("%s",line[]) ; x = charToInt(line[]) ;
y = charToInt(line[]) ;
v = charToInt(line[]) ; Graph.AddEdge(x- ,y- ,v ) ;
Graph.AddEdge(y- ,x- , v ) ;
} } void Output()
{
int i , j ;
bool flag ;
priority_queue<SolutionNode> q ; for ( i = N ; i < N+M ; i++ )
{ Graph.dijkstra(i) ;
SolutionNode node ; node.aver= ;
node.min = maxn ;
node.Gx = i-N+;
flag = true ; for ( j = ; j < N ; j++ )
{
if ( Graph.d[j] <= Ds )
{
node.aver += Graph.d[j] ;
if ( node.min > Graph.d[j] )
node.min = Graph.d[j] ;
}
else
{
flag = false ;
break ;
}
} if ( flag )
{
node.aver = node.aver / N ; q.push(node) ; printf( "now q length :%d\n" , q.size() ) ;
} } if ( q.empty() )
{
printf("No Solution") ;
return ;
} else
{
SolutionNode node = q.top() ;
printf("G%d\n", node.Gx) ;
printf("%.1f %.1f", node.min , node.aver) ;
return ;
}
} int main ( void )
{ Input() ;
Output() ; return ; }
个人觉得这道题出的有一点问题,
从题中大意可知,
如果存在着 多个满足 解决方案的 Gx 点的话,
首先 要选取平均距离 为最小的 Gx , 可是从例子可以看出 G1 G2 中平均距离最小的应该是 G2,而并非是 G1。
或许是LZ理解的有误,先存档一下, 等有时间再通关。
PAT_1072 Gas Station的更多相关文章
- [LeetCode] Gas Station 加油站问题
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
- PAT 1072. Gas Station (30)
A gas station has to be built at such a location that the minimum distance between the station and a ...
- Leetcode 134 Gas Station
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
- 【leetcode】Gas Station
Gas Station There are N gas stations along a circular route, where the amount of gas at station i is ...
- [LeetCode] Gas Station
Recording my thought on the go might be fun when I check back later, so this kinda blog has no inten ...
- 20. Candy && Gas Station
Candy There are N children standing in a line. Each child is assigned a rating value. You are giving ...
- LeetCode——Gas Station
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
- Gas Station
Description: There are N gas stations along a circular route, where the amount of gas at station i i ...
- Gas Station [LeetCode]
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
随机推荐
- FZU2234 牧场物语 DP
题意:先去再回,不能吃重复的,获取最大值 分析:等价于两个人同时去,不能吃重复的 定义dp[i][j][k]表示从起点走k步,第一个人的横坐标是i,第二个人的横坐标是j的最最大值 这个题和bc上一个回 ...
- “System.Exception”类型的异常在 NHibernate.dll 中发生,但未在用户代码中进行处理
“System.Exception”类型的异常在 NHibernate.dll 中发生,但未在用户代码中进行处理 其他信息: OCIEnvCreate 失败,返回代码为 -,但错误消息文本不可用. 如 ...
- bootstrap基本标签总结[转]
文件头: DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...
- 使用Visual Studio 2013编写可维护的本地可视化(natvis)
在Visual Studio 2012中,我们介绍了创建可视化使用原生类型的能力natvis文件. Visual Studio 2013中包含了一些改进,使其更容易编写可视化的类,在内部利用收集来存储 ...
- Esper系列(六)子查询、Exists、In/not in、Any/Some、Join
子查询 1 >= all (select salary from orderEvent.win:length_batch(5))"; 注意: 运行以上三个例句后的结果,刚开始让很费 ...
- java 小结1(static ,final,泛型)
static,final. (1)final: final:属于“终态”,意思就是不可以改变.可以修饰非抽象类,非抽象类的方法等.反正就是不能够再改变赋值了. 注意:1)fina类不能被继承,所以它没 ...
- 【原创】MapReduce编程系列之表连接
问题描述 需要连接的表如下:其中左边是child,右边是parent,我们要做的是找出grandchild和grandparent的对应关系,为此需要进行表的连接. Tom Lucy Tom Jim ...
- PC-如何提高计算机的启动和关机的速度?
如何提高计算机的启动和关机的速度? 一.bios的优化设置 在bios设置的首页我们进入"advanced bios features"选项,将光标移到"frist bo ...
- Learning JavaScript Design Patterns The Module Pattern
The Module Pattern Modules Modules are an integral piece of any robust application's architecture an ...
- 树莓派通过 HDMI - VGA 转接后分辨率始终为640*480无法修改的问题
一开始装的Raspbian,感觉系统不错,就是分辨率调不了,网上找了很多解决方法,捣鼓了差不多一天,仍然没有解决. 期间尝试换了好几个系统,比如说 raspbmc .XBian等,最后试了下Pidor ...