context switch (also sometimes referred to as a process switch or a task switch) is the switching of the CPU (central processing unit) from one process or thread to another.

A process (also sometimes referred to as a task) is an executing (i.e., running) instance of a program. In Linux, threads are lightweight processes that can run in parallel and share anaddress space (i.e., a range of memory locations) and other resources with their parent processes (i.e., the processes that created them).

context is the contents of a CPU's registers and program counter at any point in time. A register is a small amount of very fast memory inside of a CPU (as opposed to the slower RAMmain memory outside of the CPU) that is used to speed the execution of computer programs by providing quick access to commonly used values, generally those in the midst of a calculation. A program counter is a specialized register that indicates the position of the CPU in its instruction sequence and which holds either the address of the instruction being executed or the address of the next instruction to be executed, depending on the specific system.

Context switching can be described in slightly more detail as the kernel (i.e., the core of the operating system) performing the following activities with regard to processes (including threads) on the CPU: (1) suspending the progression of one process and storing the CPU's state (i.e., the context) for that process somewhere in memory, (2) retrieving the context of the next process from memory and restoring it in the CPU's registers and (3) returning to the location indicated by the program counter (i.e., returning to the line of code at which the process was interrupted) in order to resume the process.

A context switch is sometimes described as the kernel suspending execution of one process on the CPU and resuming execution of some other process that had previously been suspended. Although this wording can help clarify the concept, it can be confusing in itself because a process is, by definition, an executing instance of a program. Thus the wording suspending progression of a process might be preferable.

Context Switches and Mode Switches

Context switches can occur only in kernel mode. Kernel mode is a privileged mode of the CPU in which only the kernel runs and which provides access to all memory locations and all other system resources. Other programs, including applications, initially operate in user mode, but they can run portions of the kernel code via system calls. A system call is a request in aUnix-like operating system by an active process (i.e., a process currently progressing in the CPU) for a service performed by the kernel, such as input/output (I/O) or process creation(i.e., creation of a new process). I/O can be defined as any movement of information to or from the combination of the CPU and main memory (i.e. RAM), that is, communication between this combination and the computer's users (e.g., via the keyboard or mouse), its storage devices (e.g., disk or tape drives), or other computers.

The existence of these two modes in Unix-like operating systems means that a similar, but simpler, operation is necessary when a system call causes the CPU to shift to kernel mode. This is referred to as a mode switch rather than a context switch, because it does not change the current process.

Context switching is an essential feature of multitasking operating systems. A multitasking operating system is one in which multiple processes execute on a single CPU seemingly simultaneously and without interfering with each other. This illusion of concurrency is achieved by means of context switches that are occurring in rapid succession (tens or hundreds of times per second). These context switches occur as a result of processes voluntarily relinquishing their time in the CPU or as a result of the scheduler making the switch when a process has used up its CPU time slice.

A context switch can also occur as a result of a hardware interrupt, which is a signal from a hardware device (such as a keyboard, mouse, modem or system clock) to the kernel that anevent (e.g., a key press, mouse movement or arrival of data from a network connection) has occurred.

Intel 80386 and higher CPUs contain hardware support for context switches. However, most modern operating systems perform software context switching, which can be used on any CPU, rather than hardware context switching in an attempt to obtain improved performance. Software context switching was first implemented in Linux for Intel-compatible processors with the 2.4 kernel.

One major advantage claimed for software context switching is that, whereas the hardware mechanism saves almost all of the CPU state, software can be more selective and save only that portion that actually needs to be saved and reloaded. However, there is some question as to how important this really is in increasing the efficiency of context switching. Its advocates also claim that software context switching allows for the possibility of improving the switching code, thereby further enhancing efficiency, and that it permits better control over the validity of the data that is being loaded.

The Cost of Context Switching

Context switching is generally computationally intensive. That is, it requires considerable processor time, which can be on the order of nanoseconds for each of the tens or hundreds of switches per second. Thus, context switching represents a substantial cost to the system in terms of CPU time and can, in fact, be the most costly operation on an operating system.

Consequently, a major focus in the design of operating systems has been to avoid unnecessary context switching to the extent possible. However, this has not been easy to accomplish in practice. In fact, although the cost of context switching has been declining when measured in terms of the absolute amount of CPU time consumed, this appears to be due mainly to increases in CPU clock speeds rather than to improvements in the efficiency of context switching itself.

One of the many advantages claimed for Linux as compared with other operating systems, including some other Unix-like systems, is its extremely low cost of context switching and mode switching.

http://www.linfo.org/context_switch.html

Context Switch Definition的更多相关文章

  1. Context Switch and System Call

    How many Context Switches is “normal”? This depends very much on the type of application you run. If ...

  2. [CareerCup] 16.2 Measure Time in a Context Switch 测量上下文转换的时间

    16.2 How would you measure the time spent in a context switch? 上下文转换发生在两个进程之间,比如让一个等待进程进入执行和让一个运行进程进 ...

  3. [Chapter 3 Process]Practice 3.4 Describe what happens when a context switch occurs if the new context is already loaded into one of the register sets.

    3.4 The Sun UltraSPARC processor has multiple register sets. Describe what happens when a context sw ...

  4. 从Java视角理解CPU上下文切换(Context Switch)

    从Java视角理解系统结构连载, 关注我的微博(链接)了解最新动态   在高性能编程时,经常接触到多线程. 起初我们的理解是, 多个线程并行地执行总比单个线程要快, 就像多个人一起干活总比一个人干要快 ...

  5. 【转】CPU上下文切换的次数和时间(context switch)

    http://iamzhongyong.iteye.com/blog/1895728 什么是CPU上下文切换? 现在linux是大多基于抢占式,CPU给每个任务一定的服务时间,当时间片轮转的时候,需要 ...

  6. 操作系统重点双语阅读 - 上下文切换 Context Switch

    The context is represented in the PCB of the process. It includes the value of the CPU registers, th ...

  7. CPU上下文切换的次数和时间(context switch)

    什么是CPU上下文切换? 现在linux是大多基于抢占式,CPU给每个任务一定的服务时间,当时间片轮转的时候,需要把当前状态保存下来,同时加载下一个任务,这个过程叫做上下文切换.时间片轮转的方式,使得 ...

  8. 压力测试衡量CPU的三个指标:CPU Utilization、Load Average和Context Switch Rate

    分类: 4.软件设计/架构/测试 2010-01-12 19:58 34241人阅读 评论(4) 收藏 举报 测试loadrunnerlinux服务器firebugthread 上篇讲如何用LoadR ...

  9. context switch

    In computing, a context switch is the process of storing and restoring the state (more specifically, ...

随机推荐

  1. android 09

    <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools=&q ...

  2. Linux 性能分析工具 nmon for Linux

    http://blog.csdn.net/defonds/article/details/41725929 http://blog.csdn.net/fansy1990/article/details ...

  3. docker入门(一)

    docker安装 yum install -y docker-io [root@centos ~]# yum install -y docker-io 已加载插件:fastestmirror, lan ...

  4. Android(java)学习笔记200:Android中View动画之 XML实现 和 代码实现

    1.Animation 动画类型 Android的animation由四种类型组成: XML中: alph 渐变透明度动画效果 scale 渐变尺寸伸缩动画效果 translate 画面转换位置移动动 ...

  5. PHP 中xampp不能启动服务器的问题

    有时候别人电脑上面的XAMPP,你把安装文件拷贝下来后,会发现,自己的电脑上用不了 这个时候有很多种情况 1. 关闭你自己电脑上有可能暂用80端口的程序 2.D:\xampp\apache\conf\ ...

  6. 获取Android studio中的SHA1

    因为想要弄一下百度地图. 然后要申请一个key. 需要SHA1. 按window键 +R 输入cmd 进入C:\Users\Administrator路径 输入cd .android,进行.andro ...

  7. JSONModel的基本使用

    JSONModel 是一个库,它能智能并且快速的创建出数据 model,你可以在你的 iOS 项目或者 OSX 项目上使用它. 使用前准备 添加 JSONModel 到你的工程中 1.需要的环境: A ...

  8. 段落排版--中文字间距、字母间距(letter-spacing, word-spacing)

    中文字间隔.字母间隔设置: 如果想在网页排版中设置文字间隔或者字母间隔就可以使用    letter-spacing 来实现,如下面代码: h1{ letter-spacing:50px; } ... ...

  9. 微信小程序开发之入门篇(熟悉项目结构)

    微信小程序创建之后会生成一个项目模板,如下图所示(基本如此,但并不局限于此) 现在分别来说明一下每个文件及目录的意思 app.js 程序的入口文件,必须存在. app.js是小程序的脚本代码.我们可以 ...

  10. Swift中可选类型(Optional)的用法 以及? 和 ! 的区别 (转载博客,知识分享)

    本文转载自:代码手工艺人的博客,原文名称:Swift之 ? 和 ! Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之 ...