Description

Ladies and gentlemen, please sit up straight.

Don't tilt your head. I'm serious.

For \(n\) given strings \(S_{1},S_{2},\cdots,S_{n}\), labelled from \(1\) to \(n\), you should find the largest \(i (1 \le i \le n)\) such that there exists an integer \(j (1 \le j < i)\) and \(S_{j}\) is not a substring of \(S_{i}\).

A substring of a string \(S_{i}\) is another string that occurs in \(S_{i}\). For example, "ruiz" is a substring of "ruizhang", and "rzhang" is not a substring of "ruizhang".

Input

The first line contains an integer \(t\) \((1 \le t \le 50)\) which is the number of test cases.

For each test case, the first line is the positive integer \(n\) \((1\le n \le 500)\) and in the following n lines list are the strings \(S_{1},S_{2},\cdots,S_{n}\).

All strings are given in lower-case letters and strings are no longer than \(2000\) letters.

Output

For each test case, output the largest label you get. If it does not exist, output \(−1\).

Sample Input

4

5

ab

abc

zabc

abcd

zabcd

4

you

lovinyou

aboutlovinyou

allaboutlovinyou

5

de

def

abcd

abcde

abcdef

3

a

ba

ccc

Sample Output

Case #1: 4

Case #2: -1

Case #3: 4

Case #4: 3

开始做的姿势不对,想的是裸暴力或者什么ac自动机啊。。。。(I 'm so puny!!!)

其实这题正解就是暴力的剪枝,想如果\(S_{j}\)是\(S_{i}\)的子串(\(i > j\)),那么对于\(k > i\),若\(S_{i}\)是\(S_{k}\)的子串,那么\(S_{j}\)一定也是\(S_{k}\)的子串;如果不是\(k\)就可以更新答案,那么也就说明只需要匹配\(i\)而不要匹配\(j\),由此可以打个\(vis\)标记剪枝了。

#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std; typedef long long ll;
#define maxn (510)
#define maxl (2010)
#define rhl (5000011)
#define xi (127)
int T,N,len[maxn],mi[maxl],pre[maxn][maxl],ans;
char s[maxl]; bool exist[maxn]; inline bool find(int a,int b)
{
for (int i = len[b];i <= len[a];++i)
{
int key = pre[a][i]-(ll)pre[a][i-len[b]]*(ll)mi[len[b]]%rhl;
if (key < 0) key += rhl; if (key == pre[b][len[b]]) return true;
}
return false;
} int main()
{
freopen("5510.in","r",stdin);
freopen("5510.out","w",stdout);
scanf("%d",&T); mi[0] = 1;
for (int i = 1;i <= 2000;++i) mi[i] = (mi[i-1]*xi)%rhl;
for (int Cas = 1;Cas <= T;++Cas)
{
printf("Case #%d: ",Cas);
memset(exist,false,sizeof(exist));
scanf("%d",&N); ans = 0;
for (int i = 1;i <= N;++i)
{
scanf("%s",s+1); len[i] = strlen(s+1);
for (int j = 1;j <= len[i];++j) pre[i][j] = (pre[i][j-1]*xi+s[j]-'a'+1)%rhl;
for (int j = i-1;j;--j)
{
if (exist[j]) continue;
if (find(i,j)) exist[j] = true; else ans = i;
}
}
if (ans) printf("%d\n",ans); else puts("-1");
}
fclose(stdin); fclose(stdout);
return 0;
}

Hdu5510 Bazinga的更多相关文章

  1. Bazinga(HDU5510+KMP)

    t题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5510 题目: 题意:找到一个编号最大的字符串满足:存在一个编号比它小的字符串不是它的字串. 思路:K ...

  2. HDU 5510 Bazinga (2015沈阳现场赛,子串判断)

    Bazinga Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  3. HDU 5510 Bazinga 暴力匹配加剪枝

    Bazinga Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5510 ...

  4. hdu 5510 Bazinga(字符串kmp)

    Bazinga Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  5. Bazinga HDU 5510 Bazinga(双指针)

    Bazinga HDU 5510 Bazinga(双指针) 题链 解法:对于串i来说,如果串i是不符合的,那么代表串i之前的字符串都是i的子串,那么我们求一个新的i(定义为ti),如果i是ti 的子串 ...

  6. HDU 5510:Bazinga(暴力KMP)

    http://acm.hdu.edu.cn/showproblem.php?pid=5510 Bazinga Problem Description   Ladies and gentlemen, p ...

  7. TTTTTTTTTTTTTTTT hdu 5510 Bazinga 字符串+哈希

    Bazinga Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  8. Bazinga

    Bazinga Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  9. Bazinga HDU - 5510【技巧暴力+字符串】

    题目:https://vjudge.net/problem/HDU-5510 $2015ACM/ICPC$ 亚洲区沈阳站 题目大意: 输入$t$(表示样例个数) 如何每个样例一个 $n$,表示字符串的 ...

随机推荐

  1. JMeter对Oracle数据库进行压力测试

    步骤 (1)复制ORACLE的JDBC驱动JAR包文件(ojdbc14.jar)到JMeter的lib目录下. (2)运行jmeter.bat (3)建立线程组:右键测试计划->添加->T ...

  2. [React] React Fundamentals: JSX Deep Dive

    "JSX transforms from an XML-like syntax into native JavaScript. XML elements and attributes are ...

  3. ASP.NET Web API(一):使用初探,GET和POST数据

    概述 REST(Representational State Transfer表述性状态转移)而产生的REST API的讨论越来越多,微软在ASP.NET中也添加了Web API的功能 项目建立 在安 ...

  4. hdu2002

    import java.util.*;class Main{public static void main(String args[]){Scanner cin=new Scanner(System. ...

  5. 程序员带你学习安卓开发,十天快速入-对比C#学习java语法

    关注今日头条-做全栈攻城狮,学代码也要读书,爱全栈,更爱生活.提供程序员技术及生活指导干货. 如果你真想学习,请评论学过的每篇文章,记录学习的痕迹. 请把所有教程文章中所提及的代码,最少敲写三遍,达到 ...

  6. Canvas保存图片保存到本地

    使用Canvas绘图,将图片保存到本地方法 一.使用HTML5 a标签的download属性,将图片保存到本地,不需要链接服务器 关于download属性:HTML5 <a>标签downl ...

  7. .NET设计模式(8):适配器模式(Adapter Pattern)

    ):适配器模式(Adapter Pattern)    适配器模式(Adapter Pattern) --.NET设计模式系列之八 Terrylee,2006年2月 概述 在软件系统中,由于应用环境的 ...

  8. Android 设计随便说说之简单实践(合理组合)

    上一篇(Android 设计随便说说之简单实践(模块划分))例举了应用商店设计来说明怎么做模块划分.模块划分主要依赖于第一是业务需求,具体是怎么样的业务.应用商店则包括两个业务,就是向用户展示appl ...

  9. Eclipse出现the type java.lang.CharSequence can't be resolved.

    出现这个问题我们需要安装一下JRE1.7这个版本,然后再项目里引入一下就可以了.

  10. 修改PYTHONPATH的一种方法(在Window平台和Ubuntu下都有效)

    1.显示PYTHONPATH 2.修改PYTHONPATH 通过PYTHONPATH 中的任何 .pth 文件来添加pythonpath.比如我想添加/home/aa这个路径到pythonpath里, ...