http://ac.jobdu.com/problem.php?pid=1348 数组中的逆序对也是个常见的题目,算法导论中也有一些描述,参考:http://www.cnblogs.com/wuyuegb2312/p/3156286.html。解法自然有朴素解法O(n^2)不表,然后有基于归并排序的,可以O(n*logn)。

1.在归并排序中,同样是对一个数组分为两段处理,在处理这两段时,并不会影响右段元素与左段元素的逆序关系,只有在归并时才会改变。
2.归并时的改变方式和插入排序是类似的:右段中取出元素放在左段其余所有元素前面时,相当于左段整体后移,后移的元素数就是这个逆序数。
3.由于归并排序使用的是分治法,将每次归并的逆序数累加,最后结果就是总的逆序数。并且,归并排序的时间复杂度是O(nlogn),优于插入排序。
根据以上的探讨,归并排序稍作修改,就获得了时间复杂度为O(nlogn)的寻找逆序对总数的算法了。

本来也到此结束了,后来又发现一个基于树状数组的解法(http://boj.haotui.com/thread-2792-1-1.html),不过还是太高级,就不深入研究了。树状数组略看了一下,和数字的和有关,比如可以解决多数求和的问题。“采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了。所以我们就要用到树状数组,他的时间复杂度为O(lgn)。”(http://www.cnblogs.com/zhangshu/archive/2011/08/16/2141396.html

具体代码:

1.C++中的数组新建和删除是 int* arr = new int[n]; delete arr[];
2.出现HEAP CORRUPTION DETECTED往往是操作new申请的内存溢出。比如我一开始调用了mergeCount(0, n)就错误的访问了a[n]。 http://blog.sina.com.cn/s/blog_511703010100lz33.html

3.借鉴了别人的写法,在一个循环里就把双指针移动写完了,主要是把到头后的判断加上,一开始使用||。
4.因为mergeSort的空间复杂度是o(n),所以也可以一开始就申请好数组,就不用在递归里不断new和delete了。
5.mergeCount的时候,当右边的小于左边的时,要注意计算对逆序数目。

#include <cstdio>
using namespace std;
long long tot;
int a[100005];
void mergeCount(int l, int r) // [l, m], [m+1, r]
{
if (l >= r) return;
int m = (l + r) / 2;
mergeCount(l, m);
mergeCount(m+1, r);
int* tmp = new int[r-l+1];
int i = l;
int j = m+1;
int k = 0;
while (i <= m || j <= r)
{
if (i > m)
{
tmp[k++] = a[j++];
}
else if (j > r)
{
tmp[k++] = a[i++];
}
else if (a[i] <= a[j])
{
tmp[k++] = a[i++];
}
else
{
tmp[k++] = a[j++];
tot += (m-i+1);
}
}
for (int j = 0; j <= (r - l); j++)
{
a[l+j] = tmp[j];
}
delete[] tmp;
} int main()
{
int n;
while(scanf("%d", &n) == 1)
{
for(int i=0; i<n; ++i)
scanf("%d", &a[i]);
tot = 0;
mergeCount(0, n-1);
printf("%lld\n", tot);
}
}

  

[jobdu]数组中的逆序对的更多相关文章

  1. [Jobdu] 题目1348:数组中的逆序对

    题目描述: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 输入: 每个测试案例包括两行: 第一行包含一个整数n,表示数组 ...

  2. 九度OJ 1348 数组中的逆序对 -- 归并排序

    题目地址:http://ac.jobdu.com/problem.php?pid=1348 题目描述: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求 ...

  3. 【剑指Offer面试编程题】题目1348:数组中的逆序对--九度OJ

    题目描述: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 输入: 每个测试案例包括两行: 第一行包含一个整数n,表示数组 ...

  4. [剑指OFFER] 数组中的逆序对

    题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数.     分析:利用归并排序的思想,分成2部分,每一部分按照从大到 ...

  5. (剑指Offer)面试题36:数组中的逆序对

    题目: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 思路: 1.顺序扫描 顺序扫描整个数组,每扫描到一个数字,就将该数 ...

  6. 【剑指offer】面试题36:数组中的逆序对

    题目: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 思路: 归并排序的合并过程.主要是考虑合并两个有序序列时,计算逆序 ...

  7. 【剑指Offer学习】【面试题36:数组中的逆序对】

    题目:在数组中的两个数字假设前面一个数字大于后面的数字.则这两个数字组成一个逆序对.输入一个数组.求出这个数组中的逆序对的总数. 举例分析 比如在数组{7, 5, 6, 4 中, 一共存在5 个逆序对 ...

  8. 剑指offer_数组中的逆序对

    题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P. 并将P对1000000007取模的结果输出. 即输出P%100 ...

  9. 剑指offer(35)数组中的逆序对

    题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%1000 ...

随机推荐

  1. 4 WPF学习---系统的学习XAML语法

    转载:http://blog.csdn.net/fwj380891124/article/details/8093001 1,XAML文档的树形结构: UI在用户眼里面是个平面结构.如下图所示,在用户 ...

  2. 20160502-struts2入门--国际化

    一.国际化 准备资源文件,资源文件的命名格式如下: baseName_language_country.properties baseName_language.properties baseName ...

  3. poj2337 欧拉路径

    poj2337 这道题昨天晚上开始做,今天才A.但是问题想透了, 发现其实没那么难 题目大意: 给你一些单词,如果一个单词的末尾字符与另一个单词首字符相同,则两个的单词可以连接.问是否可以把所有单词连 ...

  4. java.lang.RuntimeException: Unable to instantiate activity ComponentInfo异常总结

    java.lang.RuntimeException: Unable to instantiate activity ComponentInfo异常总结 做android开发的可能都碰到"j ...

  5. Android的自动对焦

    1,什么是自动对焦? ---安卓的自动对焦的概念是指能够在指定的位置计算出准确的焦点位置. 这个就好像是传统意义上的手动对焦.但是google是这个意思. 2.什么是追焦? ----安卓的追焦是指FO ...

  6. Exam 70-462 Administering Microsoft SQL Server 2012 Databases 复习帖

    好吧最近堕落没怎么看书,估计这个月前是考不过了,还是拖到国庆之后考试吧.想着自己复习考试顺便也写点自己的复习的概要,这样一方面的给不准备背题库的童鞋有简便的复习方法(好吧不被题库的同学和我一样看MSD ...

  7. makefile文件制作入门

    一.首先,看一下最简单的C文件 //hello.c文件 #include <stdio.h> void main() { printf("hello world\n") ...

  8. 启发式搜索 A*算法的OC 实现

    前两天重新学习了下A*算法,上次学习A*算法已经是5年前了,看到网上铺天盖地的A*算法都是C.C++等等其他语言的,就是没有OC 的,所以抽空写了一份.今天太晚了就不说明A*算法的细节了,大家如果想学 ...

  9. tomcat错误信息解决方案【严重:StandardServer.await: create[8005]

    1.独立运行的tomcat.exe没有关闭,关闭tomcat图标并结束掉tomcat进程.(我是这个原因,在开始菜单里找到tomcat,然后stop它) 2.安装了其他的软件占用了8080端口,tom ...

  10. 395. Longest Substring with At Least K Repeating Characters

    395. Longest Substring with At Least K Repeating Characters 我的思路是先扫描一遍,然后判断是否都满足,否则,不满足的字符一定不出现,可以作为 ...