Distance dependent Chinese Restaurant Processes
Here is a note of Distance dependent Chinese Restaurant Processes
文章链接http://pan.baidu.com/s/1dEk7ZA5
1. Distance dependent CRPs
In the traditional CRP ,the probability of a customer sitting at a table is computed from the number of other customers already sitting at that table.
Now we introduce the distance dependent CRP, the seating plan probability is described in terms of the probability of a customer sitting with each of the other customers .
let denote the i th customer assignment ,the index of the customer with whom the i th customer is sitting ,let
denote the distance measurement between customers i and j , let D denote the set of all distance measurements between all customers ,and let
be a decay function .
Notice that the customer assignments do not depend on other customer assignment , only the distances between customers.
This distribution is determined by the nature of the distance measurements and the decay function .For many sets of distance measurements ,the resulting distribution over partition is no longer exchangeable ;this is an appropriate distribution to use when exchangeability is not a reasonable assumption.
2.The decay function:
In general the decay function mediates how distances between customers affect the resulting distribution over partitions .Function f is non-increasing , takes non-negative finite values ,and satisfies f(∞)=0。 (衰减函数的性质)
3. Sequential CRPs and the traditional CRP
A sequential CRP is constructed by assuming that dij=∞ for those j>i ,and this guarantees that no customer can be assigned to a later customer.And when f(d)=1 for d≠∞ and dij<∞ for j<i, the sequential CRP is can re-express the traditional CRP.
NOTICE : although these models are the same ,the corresponding Gibbs samplers are different .(why ?)
4. Marginal invariance:
The traditional CRP is marginally invariant : Marginalizing over a particular customer gives the same probability distribution as if that customer were not included in the model at all .But the DDCRP does not have this property ,and this paper gives us two example of the relevant property of DDCRPS.
Language modeling : a fully observed model
Mixture modeling: a mixture model
5. Relationship to dependent Dirichlet processes (DDP):(they are both infinite clustering model that models dependencies between the latent component assignments of the data )
The first difference is that the dependent Dirichlet process mixture use the truncations of the stick-breaking representation for approximate posterior inference ,in CONTRAST, the ddCRP mixtures are amenable to Gibbs sampling algorithms . Another difference is that the spirit behind them ,in the DDP, data are drawn from distributions that are similar to distributions of nearby data,and the particular values of the nearby data impose softer constraints than those in the ddCRP.(区分ddCRP与贝叶斯非参数模型)
Distance dependent Chinese Restaurant Processes的更多相关文章
- URAL 1962 In Chinese Restaurant 数学
In Chinese Restaurant 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/B Description When ...
- Distance Dependent Infinite Latent Feature Model 阅读笔记1
阅读文献:Distance Dependent Infinite Latent Feature Model 作者:Samuel J.Gershman ,Peter I.Frazier ,and Dav ...
- 中国餐馆过程(Chinese restaurant process)
也就是说假设空桌子有a0个人,然后顾客选择桌子的概率和桌子上人数成正比. 性质: 改变用户的排列方式,桌子的排列方式,概率不变换.
- Marginalize
在David M.Blei 的Distance Dependent Chinese Restaurant Processes 中提到:DDCRP 的一个重要性质,也是和dependent DP 的一个 ...
- 100 Most Popular Machine Learning Video Talks
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45, Gaussian Process Basics, David ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
- 关于LDA的文章
转:http://www.zhizhihu.com/html/y2011/3228.html l Theory n Introduction u Unsupervised learning by ...
- Bayesian machine learning
from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse( ...
- R Language
向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimen ...
随机推荐
- 个人项目之数独的生成与数独残局求解——C语言实现
点击获取项目文件 1.对项目的分析与初步计划: 起初拿到这个项目是非常懵逼的,因为涉及到很多个人的知识盲区,诸如:C语言文件的操作.命令行参数.Code Quality Analysis工具.性能分析 ...
- 洛谷p1119--灾难后重建(Floyd不仅仅是板子)
问题描述 询问次数 5 000 00, 顶点数 200 怎么办? dijkstra?对不起,超时了/. 时间限制是1秒,询问5 000 00 ,每次dijsktra要跑n*n*logm 次,稳 ...
- 记一次买4K显示器的心酸历程
由于最近在 B 站直播的次数有点多,还有就是平时录制的视频也有点人看了,所以想多做点视频发布到 B 站上面,但是自己看了以前的视频,发现视频确实画面确实粗糙,不仅仅是视频不清晰的原因,更主要的是我眼睛 ...
- 有关call和apply、bind的区别及this指向问题
call和apply都是解决this指向问题的方法,唯一的区别是apply传入的参数除了其指定的this对象之外的参数是一个数组,数组中的值会作为参数按照顺序传入到this指定的对象中. bind是解 ...
- 【汇编】1.汇编环境的搭建:DOSBox的安装
前言 DOSBox是一款在windows系统运行DOS程序的环境模拟器.可以解决在64位机中汇编程序编译调试等问题. 本文以 DOSBox 0.74 为例,汇编编译程序采用MASM6. 第一步下载相关 ...
- Ant Design框架中不同的组件访问不同的models中的数据
Ant Design框架中不同的组件访问不同的models中的数据 本文记录了我在使用该框架的时候踩过的坑,方便以后查阅. 一.models绑定 在某个组件(控件或是页面),要想从某个models中获 ...
- java序列化(一)
今天我们来探讨一下java的序列化与反序列化.之前对此一直有概念,但是并没有真正的去测试.大家都知道,所谓的序列化就是把java代码读取到一个文件中,反序列化就是从文件中读取出对象.在网络传输过程中, ...
- Quartz.NET总结(八)如何根据自己需要配置Topshelf 服务
前面讲了如何使用Topshelf 快速开发windows服务, 不清楚的可以看之前的这篇文章:https://www.cnblogs.com/zhangweizhong/category/771057 ...
- python报错: invalid syntax
invalid syntax: 无效的语法. 解决办法:查看当前语句中的 , 如果当前行没找到错误,依次往上找,往上找时可以利用是否有输出进行快速查找. 原因:python语法很严格,少了左括号.右 ...
- Spring Boot2 系列教程 (十四) | 统一异常处理
如题,今天介绍 SpringBoot 是如何统一处理全局异常的.SpringBoot 中的全局异常处理主要起作用的两个注解是 @ControllerAdvice 和 @ExceptionHandler ...