Here is a note of Distance dependent Chinese Restaurant Processes

文章链接http://pan.baidu.com/s/1dEk7ZA5

1. Distance dependent CRPs

In the traditional CRP ,the probability of a customer sitting at a table is computed from the number of other customers already sitting at that table.

Now we introduce the distance dependent CRP, the seating plan probability is described in terms of the probability of a customer sitting with each of the other customers .

let denote the i th customer assignment ,the index of the customer with whom the i th customer is sitting ,let denote the distance measurement between customers i and j , let D denote the set of all distance measurements between all customers ,and let be a decay function .

Notice that the customer assignments do not depend on other customer assignment , only the distances between customers.

This distribution is determined by the nature of the distance measurements and the decay function .For many sets of distance measurements ,the resulting distribution over partition is no longer exchangeable ;this is an appropriate distribution to use when exchangeability is not a reasonable assumption.

2.The decay function:

In general the decay function mediates how distances between customers affect the resulting distribution over partitions .Function  f is non-increasing , takes non-negative finite values ,and satisfies f(∞)=0。 (衰减函数的性质)

3. Sequential CRPs and the traditional CRP

A sequential CRP is constructed by assuming that dij=∞ for those j>i ,and this guarantees that no customer can be assigned to a later customer.And when f(d)=1 for d≠∞ and dij<∞ for j<i, the sequential CRP is can re-express the traditional CRP.

NOTICE : although these models are the same ,the corresponding Gibbs samplers are different .(why ?)

4. Marginal invariance:

The traditional CRP is marginally invariant : Marginalizing over a particular customer gives the same probability distribution as if  that customer were not included in the model at all .But the DDCRP does not have this property ,and this paper gives us two example of the relevant property of DDCRPS.

Language modeling : a fully observed model

Mixture modeling: a mixture model

5.  Relationship to dependent Dirichlet processes (DDP):(they are both infinite clustering model that models dependencies between the latent component assignments of the data )

The first difference is that the dependent Dirichlet process mixture use the truncations of the stick-breaking representation for approximate posterior inference ,in CONTRAST, the ddCRP mixtures are amenable to Gibbs sampling algorithms . Another difference is that the spirit behind them ,in the DDP, data are drawn from distributions that are similar to distributions of nearby data,and the particular values of the nearby data impose softer constraints than those in the ddCRP.(区分ddCRP与贝叶斯非参数模型)

Distance dependent Chinese Restaurant Processes的更多相关文章

  1. URAL 1962 In Chinese Restaurant 数学

    In Chinese Restaurant 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/B Description When ...

  2. Distance Dependent Infinite Latent Feature Model 阅读笔记1

    阅读文献:Distance Dependent Infinite Latent Feature Model 作者:Samuel J.Gershman ,Peter I.Frazier ,and Dav ...

  3. 中国餐馆过程(Chinese restaurant process)

    也就是说假设空桌子有a0个人,然后顾客选择桌子的概率和桌子上人数成正比. 性质: 改变用户的排列方式,桌子的排列方式,概率不变换.

  4. Marginalize

    在David M.Blei 的Distance Dependent Chinese Restaurant Processes 中提到:DDCRP 的一个重要性质,也是和dependent DP 的一个 ...

  5. 100 Most Popular Machine Learning Video Talks

    100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45,  Gaussian Process Basics, David ...

  6. ICLR 2013 International Conference on Learning Representations深度学习论文papers

    ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...

  7. 关于LDA的文章

    转:http://www.zhizhihu.com/html/y2011/3228.html l  Theory n  Introduction u  Unsupervised learning by ...

  8. Bayesian machine learning

    from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse( ...

  9. R Language

    向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimen ...

随机推荐

  1. scrapy分布式Spider源码分析及实现过程

    分布式框架scrapy_redis实现了一套完整的组件,其中也实现了spider,RedisSpider是在继承原scrapy的Spider的基础上略有改动,初始URL不在从start_urls列表中 ...

  2. 0011 开发者工具(chrome)

    此工具是我们的必备工具,以后代码出了问题 我们首先第一反应就是: "按F12"或者是 "shift+ctrl+i" 打开 开发者工具. 菜单: 右击网页空白出- ...

  3. jsp中点击一个图片跳转到另一个页面的方法

    1.这是jsp页面中的关于图片的那段代码 <img src="images/tj1.png " id="tj1"></img> 2.跳转 ...

  4. selenium元素和浏览器操作

    click和clear from selenium.webdriver.support.wait import WebDriverWait import time browser = webdrive ...

  5. 003 ansible部署ceph集群

    介绍:在上一次的deploy部署ceph,虽然出了结果,最后的结果并没有满足最初的目的,现在尝试使用ansible部署一遍,看是否会有问题 一.环境准备 ceph1充当部署节点,ceph2,ceph3 ...

  6. spring之第一个spring程序

    spring具体描述: 轻量级 IOC:依赖注入 AOP:面向切片编程 容器:spring是一个容器,包含并且管理应用的生命周期 框架 一站式 一.搭建spring开发环境 在eclipse中新建一个 ...

  7. linux权限说明

    Linux 中的权限 这里我拿一个tomcat目录举例说明.首先我们在linux系统中执行命令:ls -l 我们拿出其中一个说明-rwxr-xr-x,在Linux 系统中权限是区分用户的,即用户.组用 ...

  8. echo 传义序列

    echo 传义序列:\a 警示字符\b 退格\c 输出中忽略最后的换行符\f 清屏\n 换行\r 回车\t 水平制表符\v 垂直制表符\\ 反斜杠字符\0ddd 将字符表示成1到3位的八进制数值

  9. IDEA 配置及常用快捷键

    常用快捷键 1.Ctrl+Alt+T 把选择的代码放入 try{} 或者 if{} 里 2.Ctrl+O 重写方法提示 3.Alt+回车 导包提示 4.Alt+/ 代码提示(默认不是这个,需要参照后文 ...

  10. css写斜角

    项目开发中遇到了这样的效果,百度了一波,可以使用css3的伪类实现: /*斜角公用*/1.外层的div加class='wrapper' 并需要设置相对定位 .wrapper:before { -moz ...