Distance dependent Chinese Restaurant Processes
Here is a note of Distance dependent Chinese Restaurant Processes
文章链接http://pan.baidu.com/s/1dEk7ZA5
1. Distance dependent CRPs
In the traditional CRP ,the probability of a customer sitting at a table is computed from the number of other customers already sitting at that table.
Now we introduce the distance dependent CRP, the seating plan probability is described in terms of the probability of a customer sitting with each of the other customers .
let denote the i th customer assignment ,the index of the customer with whom the i th customer is sitting ,let
denote the distance measurement between customers i and j , let D denote the set of all distance measurements between all customers ,and let
be a decay function .
Notice that the customer assignments do not depend on other customer assignment , only the distances between customers.
This distribution is determined by the nature of the distance measurements and the decay function .For many sets of distance measurements ,the resulting distribution over partition is no longer exchangeable ;this is an appropriate distribution to use when exchangeability is not a reasonable assumption.
2.The decay function:
In general the decay function mediates how distances between customers affect the resulting distribution over partitions .Function f is non-increasing , takes non-negative finite values ,and satisfies f(∞)=0。 (衰减函数的性质)
3. Sequential CRPs and the traditional CRP
A sequential CRP is constructed by assuming that dij=∞ for those j>i ,and this guarantees that no customer can be assigned to a later customer.And when f(d)=1 for d≠∞ and dij<∞ for j<i, the sequential CRP is can re-express the traditional CRP.
NOTICE : although these models are the same ,the corresponding Gibbs samplers are different .(why ?)
4. Marginal invariance:
The traditional CRP is marginally invariant : Marginalizing over a particular customer gives the same probability distribution as if that customer were not included in the model at all .But the DDCRP does not have this property ,and this paper gives us two example of the relevant property of DDCRPS.
Language modeling : a fully observed model
Mixture modeling: a mixture model
5. Relationship to dependent Dirichlet processes (DDP):(they are both infinite clustering model that models dependencies between the latent component assignments of the data )
The first difference is that the dependent Dirichlet process mixture use the truncations of the stick-breaking representation for approximate posterior inference ,in CONTRAST, the ddCRP mixtures are amenable to Gibbs sampling algorithms . Another difference is that the spirit behind them ,in the DDP, data are drawn from distributions that are similar to distributions of nearby data,and the particular values of the nearby data impose softer constraints than those in the ddCRP.(区分ddCRP与贝叶斯非参数模型)
Distance dependent Chinese Restaurant Processes的更多相关文章
- URAL 1962 In Chinese Restaurant 数学
In Chinese Restaurant 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/B Description When ...
- Distance Dependent Infinite Latent Feature Model 阅读笔记1
阅读文献:Distance Dependent Infinite Latent Feature Model 作者:Samuel J.Gershman ,Peter I.Frazier ,and Dav ...
- 中国餐馆过程(Chinese restaurant process)
也就是说假设空桌子有a0个人,然后顾客选择桌子的概率和桌子上人数成正比. 性质: 改变用户的排列方式,桌子的排列方式,概率不变换.
- Marginalize
在David M.Blei 的Distance Dependent Chinese Restaurant Processes 中提到:DDCRP 的一个重要性质,也是和dependent DP 的一个 ...
- 100 Most Popular Machine Learning Video Talks
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45, Gaussian Process Basics, David ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
- 关于LDA的文章
转:http://www.zhizhihu.com/html/y2011/3228.html l Theory n Introduction u Unsupervised learning by ...
- Bayesian machine learning
from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse( ...
- R Language
向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimen ...
随机推荐
- web服务器调用Servlet的过程
Servlet程序是由WEB服务器调用,web服务器收到客户端的Servlet访问请求后: Web服务器首先检查是否已经装载并创建了该Servlet的实例对象.如果是,则直接执行第④步,否则,执行第② ...
- 深入浅出ES6的标准内置对象Proxy
Proxy是ES6规范定义的标准内置对象,可以对目标对象的读取.函数调用等操作进行拦截.一般来说,通过Proxy可以让目标对象"可控",比如是否能调用对象的某个方法,能否往对象添加 ...
- requests爬取豆瓣top250电影信息
''' 1.爬取豆瓣top250电影信息 - 第一页: https://movie.douban.com/top250?start=0&filter= - 第二页: https://movie ...
- Cocos Creator | 飞刀大乱斗开发教程系列(一)
预览效果 具体内容 ■ 这一期,主要讲解主页下方列表选项如何实现.也就是游戏开始后,加载所有现有的英雄列表,这一功能的实现,如下图部分. ■ 列表使用 ScrollView 实现,横向滚动,设置好上下 ...
- Python中三大框架各自的应用场景(DJango,flask,Tornado)
django:主要是用来搞快速开发的,他的亮点就是快速开发,节约成本,正常的并发量不过10000,如果要实现高并发的话,就要对django进行二次开发,比如把整个笨重的框架给拆掉,自己写socket实 ...
- 洛谷$P1600$ 天天爱跑步 树上差分
正解:树上差分 解题报告: 传送门$QwQ$! 这题还挺妙的,,,我想了半天才会$kk$ 首先对一条链$S-T$,考虑先将它拆成$S-LCA$和$LCA-T$,分别做.因为总体上来说差不多接下来我就只 ...
- 利用selenium库自动执行滑动验证码模拟登陆
破解流程 #1.输入账号.密码,然后点击登陆 #2.点击按钮,弹出没有缺口的图 #3.针对没有缺口的图片进行截图 #4.点击滑动按钮,弹出有缺口的图 #5.针对有缺口的图片进行截图 #6.对比两张图片 ...
- spring cloud微服务快速教程之(三)声明式访问Feign、负载均衡Ribbon
0-前言 eureka实际上已经集成了负载均衡调度框架Ribbon: 我们有了各个微服务了,那怎么来调用他们呢,一种方法是可以使用 RestTemplate(如:String str= restTem ...
- Sentinel :微服务哨兵
1. Sentinel 是什么? 随着微服务的流行,服务和服务之间的稳定性变得越来越重要.Sentinel 以流量为切入点,从流量控制.熔断降级.系统负载保护等多个维度保护服务的稳定性. Sentin ...
- restapi-sql
身份验证,确定该成员是交过费的机构的成员,包含(用户名)和(密码) 各个表中的属性,有关timetemp等特殊类型,LocalDate等日期等具体格式. 引入了传输过程的不同的数据格式导致的两个错误, ...