题目链接:https://nanti.jisuanke.com/t/40254

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<set>
#include<ctime>
#include<vector>
#include<cmath>
#include<algorithm>
#include<map>
#define ll long long
using namespace std;
const int N=1e3+;
const int P=;
ll pre[N], suf[N], ifac[N],sum[N],a[N],fac[N];
ll Pow(ll x, int t)
{
ll res=;
while (t)
{
if (t&) res=(x*res)%P;
x=x*x%P; t>>=;
}
return res;
}
void init(int n)
{
fac[]=;
for(int i=;i<=n+;i++)
{
fac[i]=fac[i-]*i%P;
}
for(int i=;i<=n+;i++)
{
ifac[i]=Pow(fac[i],P-);
}
}
ll Lagrange(ll *y,ll n,ll k)
{
ll ans=; pre[]=;suf[n+]=;
for (int i=; i<=n; i++) pre[i+]=1ll*pre[i]*(k-i)%P;
for (int i=n; i>=; i--) suf[i]=1ll*suf[i+]*(k-i)%P; for (int i=; i<=n; i++)
{
ll temp=y[i]*pre[i]%P*suf[i+]%P*ifac[i]%P*ifac[n-i]%P;
if((n-i)&)
ans=(ans-temp)%P;
else
ans=(ans+temp)%P;
}
return (ans%P+P)%P;
} int main()
{
ll T,n,m,L,R;
cin>>T;
init();
while(T--)
{
cin>>n>>m;
for(int i=;i<=n;i++)
{
cin>>a[i];
}
a[n+]=Lagrange(a,n,n+);
sum[]=a[]%P;
for(int i=;i<=n+;i++)
{
sum[i]=(sum[i-]+a[i])%P;
}
for(int j=;j<=m;j++)
{
cin>>L>>R;
ll ans=Lagrange(sum,n+,R)-Lagrange(sum,n+,L-);
cout<<(ans+P)%P<<"\n";
}
}
return ;
}

南昌邀请赛B题(拉格朗日插值)的更多相关文章

  1. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

  2. 2019南昌邀请赛网络预选赛 M. Subsequence

    传送门 题意: 给出一个只包含小写字母的串 s 和n 个串t,判断t[i]是否为串 s 的子序列: 如果是,输出"YES",反之,输出"NO": 坑点: 二分一 ...

  3. BZOJ3601 一个人的数论 莫比乌斯反演、高斯消元/拉格朗日插值

    传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i ...

  4. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...

  5. 【Luogu4781】【模板】拉格朗日插值

    [Luogu4781][模板]拉格朗日插值 题面 洛谷 题解 套个公式就好 #include<cstdio> #define ll long long #define MOD 998244 ...

  6. BZOJ.3453.tyvj 1858 XLkxc(拉格朗日插值)

    BZOJ 题意即求\[\sum_{i=0}^n\sum_{j=1}^{a+id}\sum_{x=1}^jx^k\] 我们知道最后一个\(\sum\)是自然数幂和,设\(f(n)=\sum_{x=1}^ ...

  7. luogu P4781 【模板】拉格朗日插值

    嘟嘟嘟 本来以为拉格朗日插值是一个很复杂的东西,今天学了一下才知道就是一个公式-- 我们都知道\(n\)个点\((x_i, y_i)\)可以确定唯一一个最高次为\(n - 1\)的多项式,那么现在我们 ...

  8. fold算法(拉格朗日插值)

    如果打表发现某个数列: 差分有限次之后全为0 例如: 2017新疆乌鲁木齐ICPC现场赛D题 ,,,,,,,,,,…… [2018江苏南京ICPC现场赛也有这样的题目] 那么可以使用以下黑科技计算出第 ...

  9. 【BZOJ4559】成绩比较(动态规划,拉格朗日插值)

    [BZOJ4559]成绩比较(动态规划,拉格朗日插值) 题面 BZOJ 洛谷 题解 显然可以每门课顺次考虑, 设\(f[i][j]\)表示前\(i\)门课程\(zsy\)恰好碾压了\(j\)个\(yy ...

随机推荐

  1. 加密算法极先锋之MD5算法

    在开发过程中,避免不了要涉及到数据加密,比如用户账号密码的加密,用户敏感数据的加密,涉及到的加密算法种类繁多,作为拿来主义的开发者时间精力有限,能够清楚其中主流的加密算法和用途,就已经足够了. 主要的 ...

  2. (数据科学学习手札78)基于geopandas的空间数据分析——基础可视化

    本文对应代码和数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 通过前面的文章,我们已经对geopanda ...

  3. TortoiseGit 绑定 GitHub/Gitee ssh秘钥

    小乌龟生成私钥和公钥 打开PuTTYgen 生成公钥/私钥文件 打开Pageant添加私钥.ppk文件 打开公钥文件获取key 打开GitHub/Gitee添加公钥 Gitee GitHub

  4. MySql优化之mycat

    1. 解压mycat,不要放在有中文目录的地方  下载地址:http://dl.mycat.io/1.6-RELEASE/2 .修改mycat解压目录下的conf文件夹中server.xml文件,配置 ...

  5. 避免js重复加载的问题

    避免js重复加载的问题 在日常开发中,一个页面加载另一个页面的时候,就会把另一个页面的js也会加载进来,那么如何才能避免被加载页面不再重复加载已经加载过的js呢? 先上代码 动态加载js // 加载j ...

  6. myeclipse 2018 intaslled jars JREs 选项区别,及注意事项

    Standard 1.1.x VM与Standard VM的区别 在Eclipse或MyEclipse中要设置Installed JREs时,有三个选择: - Execution Environmen ...

  7. Kubernetes CI/CD(1)

    本文通过在kubernetes上启动Jenkins服务,并将宿主机上的docker.docker.sock挂载到Jenkins容器中,实现在Jenkins容器中直接打镜像的形式实现CI功能. Kube ...

  8. PHP0014:PHP操作文件

    查看源代码 用这种方式抓取网页,和原始网页一模一样. 数组不能用echo 将一个网页保存到本地html文件

  9. vue富文本编辑器vue-quill-editor使用总结(包含图片上传,拖拽,放大和缩小)

    vue-quill-editor是vue很好的富文本编辑器,富文本的功能基本上都支持,样式是黑白色,简洁大方. 第一步下载 vue-quill-editor: npm i vue-quill-edit ...

  10. intellji IDEA 2019版激活码(亲测可用 2019年10月14日08:53:54)

    MNQ043JMTU-eyJsaWNlbnNlSWQiOiJNTlEwNDNKTVRVIiwibGljZW5zZWVOYW1lIjoiR1VPIEJJTiIsImFzc2lnbmVlTmFtZSI6I ...