看了题解又调了很久,用set来维护当前满足条件的pair<degree[v],v>

离线操作,先建好一张图,然后建立好集合,每次删边后都把集合里不满足条件的点删去,同时更新集合

/*
离线操作
*/
#include<bits/stdc++.h>
#include<vector>
using namespace std;
#define maxn 200005
vector<int>G[maxn];
int n,m,degree[maxn],k;
set<pair<int,int> >s;
set<pair<int,int> >::iterator it;
struct E{int x,y;}e[maxn];
int ans[maxn]; int main(){
cin>>n>>m>>k;
for(int i=;i<=m;i++){
cin>>e[i].x>>e[i].y;
++degree[e[i].x],++degree[e[i].y];
G[e[i].x].push_back(e[i].y);
G[e[i].y].push_back(e[i].x);
}
for(int i=;i<=n;i++)s.insert(make_pair(degree[i],i));
for(int i=m;i>=;i--){
while(s.size()){
pair<int,int>p=*(s.begin());
int u=p.second; if(degree[u]<k){
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(s.find(make_pair(degree[v],v))!=s.end()){
s.erase(make_pair(degree[v],v));
degree[v]--;
s.insert(make_pair(degree[v],v));
}
}
s.erase(make_pair(degree[u],u));
}
else break;
}
ans[i]=s.size();

      //当且仅当这条边的两个端点都在集合里,反之这条边贡献的degree肯定被删去过了
if(s.find(make_pair(degree[e[i].x],e[i].x))!=s.end() && s.find(make_pair(degree[e[i].y],e[i].y))!=s.end()){
s.erase(make_pair(degree[e[i].x],e[i].x));
degree[e[i].x]--;
s.insert(make_pair(degree[e[i].x],e[i].x)); s.erase(make_pair(degree[e[i].y],e[i].y));
degree[e[i].y]--;
s.insert(make_pair(degree[e[i].y],e[i].y));
}
G[e[i].x].pop_back();G[e[i].y].pop_back();//删边
}
for(int i=;i<=m;i++)cout<<ans[i]<<'\n';
}

连通图,set——cf1037E的更多相关文章

  1. BZOJ 3237: [Ahoi2013]连通图

    3237: [Ahoi2013]连通图 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1161  Solved: 399[Submit][Status ...

  2. dfs判断连通图(无向)

    在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点vi到顶点vj有路径相连(当然从vj到vi也一定有路径),则称vi和vj是连通的.如果 G 是有向图,那么连接vi和vj的路径中所有的边都 ...

  3. bfs判断连通图(无向)

    在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点vi到顶点vj有路径相连(当然从vj到vi也一定有路径),则称vi和vj是连通的.如果 G 是有向图,那么连接vi和vj的路径中所有的边都 ...

  4. POJ2762 Going from u to v or from v to u?(判定单连通图:强连通分量+缩点+拓扑排序)

    这道题要判断一张有向图是否是单连通图,即图中是否任意两点u和v都存在u到v或v到u的路径. 方法是,找出图中所有强连通分量,强连通分量上的点肯定也是满足单连通性的,然后对强连通分量进行缩点,缩点后就变 ...

  5. 无向连通图求割边+缩点+LCA

    Network Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7082   Accepted: 2555 Descripti ...

  6. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  7. [kuangbin带你飞]专题九 连通图

        ID Origin Title   76 / 163 Problem A POJ 1236 Network of Schools   59 / 177 Problem B UVA 315 Ne ...

  8. 基于mapreduce的大规模连通图寻找算法

    基于mapreduce的大规模连通图寻找算法 当我们想要知道哪些账号是一个人的时候往往可以通过业务得到两个账号之间有联系,但是这种联系如何传播呢? 问题 已知每个账号之间的联系 如: A B B C ...

  9. ZOJ 2588 Burning Bridges(求含重边的无向连通图的割边) - from lanshui_Yang

    Burning Bridges Time Limit: 5 Seconds Memory Limit: 32768 KB Ferry Kingdom is a nice little country ...

随机推荐

  1. 实现solr热词排行榜

    现在有业务场景,要求实现词库里面,最新,最热的词并显示,点击热词后可以进入相关信息的文章或者句子 热词的显示频率12小时更新一次. 实现思路: 实现步骤:

  2. Python3数据科学入门与实践✍✍✍

    Python3数据科学入门与实践  整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候可 ...

  3. neo4j常用cypher语句

    阅读更多 1.删除带有关系的节点   a.先删除关系 match (n:Node)-[r:关系名称]-() where (n...条件) delete r   b.删除节点 match (n:Node ...

  4. php pdo 获取数据转换为json

    php 查询语句获取数据,数据库有好多表现形式,如何拿出自己需要的数据 $raceSQL ='select id, race_name,race_code,content from je_race ' ...

  5. jq的绑定动态元素

    在项目中经常会遇到需要在页面中插入动态元素的情况,比如页面中有一个按钮: <div id="btn">确定</div> 点击按钮时在body中插入一段div ...

  6. Shell 学习(二)

    目录 Shell 学习(二) 1 设置环境变量 1.1 基本语法 1.2 实践 2 位置参数变量 2.1 介绍 2.2 基本语法 2.3 位置参数变量应用实例 3 预定义变量 3.1 基本介绍 3.2 ...

  7. [NOIP2005] 过河【Dp,思维题,缩点】

    Online Judge:Luogu P1052 Label:Dp,思维题,缩点,数学 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子 ...

  8. dubbo重连机制会不会造成错误

    dubbo在调用服务不成功时,默认会重试2次. Dubbo的路由机制,会把超时的请求路由到其他机器上,而不是本机尝试,所以 dubbo的重试机器也能一定程度的保证服务的质量. 但是如果不合理的配置重试 ...

  9. 蛮好用的Gungho重点工作督查督办跟踪管理系统

    重点工作督查督办跟踪管理系统可以实现: 为了确保上级重要决定.指示和本单位重大目标和工作部署及时落到实处,确定实效,提升办事效率. 重点工作督查督办事项包括: 1)上级单位或领导的批示指示: 2)公司 ...

  10. Java带头节点单链表的增删合并以及是否有环

    带头节点单链表 1.优势: 1)当链表为空时,指针指向头结点,不会发生null指针异常 2)方便特殊操作(删除第一个有效节点或者插入一个节点在表头) 3)单链表加上头结点之后,无论单链表是否为空,头指 ...