这道题非常巧妙!!!

我们进行点分治的时候,算出当前子节点的所有子树中的节点,到当前节点节点的儿子节点的距离,如下图意思就是

当前节点的红色节点,我们要求出红色节点的儿子节点绿色节点,所有绿色的子树节点的到当绿色的点权乘积

有如下的情况:

1*5*7  3*6*7

2*5*7 4*6*7

然后我们要想办法查询其他链上到红色节点的乘积,比如蓝色的所有子树到红色节点的乘积,以及这些乘积对应的链的尾部节点。

因此我们需要用逆元求,因为我们并不容易直接求出一条链上所有节点的点权乘积为K的链,但是我们可以通过搜索出所有当前节点的乘积,然后查询逆元长度的链条是否存在,更加方便的求出答案。

比较抽象。。。多打几遍就懂了。。。

#pragma comment(linker,"/STACK:102400000,102400000")
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#define LL long long
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxx = 2e5+6;
const int MOD = 1000003;
int ver[maxx],head[maxx],Next[maxx],q[maxx];
int sz[maxx],mp[MOD+10],vis[maxx],a[maxx],id[maxx];
int inv[MOD+10];
int tot,mx,size,root,l,r,ansx,ansy,k;
inline int read()
{
int x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
void add(int u,int v){
ver[++tot]=v;Next[tot]=head[u];head[u]=tot;
ver[++tot]=u;Next[tot]=head[v];head[v]=tot;
}
///求重心
void getroot(int u,int fa){
sz[u]=1;
int num=0;
for (int i=head[u];i;i=Next[i]){
int v=ver[i];
if (v==fa||vis[v])continue;
getroot(v,u);
sz[u]+=sz[v];
num=max(num,sz[v]);
}
num=max(num,size-sz[u]);
if (num<mx)mx=num,root=u;
}
///求子树的链的点权积
void getdis(int u,int fa,int val){
q[++r]=val;
id[r]=u;
for (int i=head[u];i;i=Next[i]){
int v=ver[i];
if (v==fa || vis[v])continue;
getdis(v,u,(LL)val*a[v]%MOD);
}
}
///检查逆元所对应的长度是否存在
void check(int x,int val){
int w=(LL)inv[val]*k%MOD;
int y=mp[w];
if (y==0||x==y)return;
if (x>y)swap(x,y);
if (x<ansx || (x==ansx && y<ansy)){
ansx=x;
ansy=y;
}
return;
}
void solve(int u){
vis[u]=1;
mp[a[u]]=u;
///求出当前节点的子树对应的点权积
for (int i=head[u];i;i=Next[i]){
int v=ver[i];
if (vis[v])continue;
r=0;
getdis(v,u,a[v]);
for (int j=1;j<=r;j++){
check(id[j],q[j]);
}
///把所有子树链的乘积再乘上当前节点的权值,
///这样保存使得另外一颗子树的一条链能够轻松找到另外一条不和自己在同一个子树内且点权乘积为K的长度
for (int j=1;j<=r;j++){
q[j]=(LL)q[j]*a[u]%MOD;
int now=mp[q[j]];
if (now==0 || now>id[j]){
mp[q[j]]=id[j];
}
}
}
mp[a[u]]=0;
///要继续点分治,父亲节点的信息以及没有用了
for (int i=head[u];i;i=Next[i]){
int v=ver[i];
if(vis[v])continue;
r=0;
l=1;
getdis(v,u,(LL)a[u]*a[v]%MOD);
for(int j=1;j<=r;j++){
mp[q[j]]=0;
}
}
for (int i=head[u];i;i=Next[i]){
int v=ver[i];
if (vis[v])continue;
size=sz[v];
mx=INF;
getroot(v,0);
solve(root);
}
}
int main(){
inv[1]=1;
for (int i=2;i<MOD;i++){
inv[i]=(LL)(MOD-(MOD/i))*inv[MOD%i]%MOD;
}
int n;
while(~scanf("%d%d",&n,&k)){
for(int i=1;i<=n;i++){
a[i]=read();
}
tot=0;
memset(mp,0,sizeof(mp));
int u,v;
for (int i=1;i<=n;i++){
vis[i]=0;
head[i]=0;
}
tot=0;
for (int i=1;i<n;i++){
u=read();
v=read();
add(u,v);
}
ansx=INF;
ansy=INF;
mx=INF;
size=n;
getroot(1,0);
solve(root);
if (ansx==INF){
printf("No solution\n");
}else {
printf("%d %d\n",ansx,ansy);
}
}
return 0;
}

  

E - D Tree HDU - 4812 点分治+逆元的更多相关文章

  1. HDU 4812:D Tree(树上点分治+逆元)

    题目链接 题意 给一棵树,每个点上有一个权值,问是否存在一条路径(不能是单个点)上的所有点相乘并对1e6+3取模等于k,输出路径的两个端点.如果存在多组答案,输出字典序小的点对. 思路 首先,(a * ...

  2. HDU 4812 (点分治)

    题目:https://vjudge.net/contest/307753#problem/E 题意:给你一颗树,树上每个点都有个权值,现在问你是否存在 一条路径的乘积 mod 1e6+3  等于 k的 ...

  3. D Tree HDU - 4812

    https://vjudge.net/problem/HDU-4812 点分就没一道不卡常的? 卡常记录: 1.求逆元忘开longlong 2.把solve中分离各个子树的方法,由“一开始全部加入,处 ...

  4. hdu 4812 DTree (点分治)

    D Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  5. HDU 4812 D Tree

    HDU 4812 思路: 点分治 先预处理好1e6 + 3以内到逆元 然后用map 映射以分治点为起点的链的值a 成他的下标 u 然后暴力跑出以分治点儿子为起点的链的值b,然后在map里查找inv[b ...

  6. HDU 4871 Shortest-path tree 最短路 + 树分治

    题意: 输入一个带权的无向连通图 定义以顶点\(u\)为根的最短路生成树为: 树上任何点\(v\)到\(u\)的距离都是原图最短的,如果有多条最短路,取字典序最小的那条. 然后询问生成树上恰好包含\( ...

  7. hdu 5016 点分治(2014 ACM/ICPC Asia Regional Xi'an Online)

    Mart Master II Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  8. H - Partial Tree HDU - 5534 (背包)

    题目链接: H - Partial Tree  HDU - 5534 题目大意:首先是T组测试样例,然后n个点,然后给你度数分别为(1~n-1)对应的不同的权值,然后问你在这些点形成树的前提下的所能形 ...

  9. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

随机推荐

  1. python基础--常用的模块(collections、time、datetime、random、os、sys、json、pickle)

    collection模块: namedtuple:它是一个函数,是用来创建一个自定义的tuple对象的,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素.所以我们就可以 ...

  2. Spring2.5依靠注入的方式有三种

    Spring2.5依靠注入的方式有三种: 1.通过setter方法注入: 2.通过构造方法注入: 3.通过注解进行注入: 第一种方式:通过setter方法注入 Java代码 package com.t ...

  3. for循环取出每个i的值

    <!DOCTYPE html> <html> <head> <title></title> </head> <body&g ...

  4. javaScript中的事件对象event是怎样

    事件对象event,每当一个事件被触发的时候,就会随之产恒一个事件对象event,该对象中主要包含了关于该事件的基本属性,事件类型type(click.dbclick等值).目标元素target(我的 ...

  5. 如何制作可以在 MaxCompute 上使用的 crcmod

    之前我们介绍过在 PyODPS DataFrame 中使用三方包.对于二进制包而言,MaxCompute 要求使用包名包含 cp27-cp27m 的 Wheel 包.但对于部分长时间未更新的包,例如 ...

  6. SQL竖表转横表Json数据

    1.数据准备 create  table  Vertical(  Id  int ,  ProjectName varchar(20),  ProjectValue int ) insert into ...

  7. 【django后端分离】Django Rest Framework之一般配置(简单剖析)

    1:常设状态码 200 OK - [GET]:服务器成功返回用户请求的数据,该操作是幂等的(Idempotent). 201 CREATED - [POST/PUT/PATCH]:用户新建或修改数据成 ...

  8. Ubuntu中NS2安装详细教程

    前言: NS2是指 Network Simulator version 2,NS(Network Simulator) 是一种针对网络技术的源代码公开的.免费的软件模拟平台,研究人员使用它可以很容易的 ...

  9. pytest fixture 利用 params参数实现用例集合

    @pytest.fixture有一个params参数,接受一个列表,列表中每个数据都可以作为用例的输入.也就说有多少数据,就会形成多少用例.如下面例子,就形成3条用例 test_parametrizi ...

  10. JQuery--关系选择器

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...