题意

\(s\{\}\) 是一个循环数列

循环节为 \(n\),你可以改掉 \(m\) 项,这 \(m\) 项独立,且不影响循环节

考虑线段树维护矩阵,单点修改最多m次,每次矩阵快速幂就完事了

// powered by c++11
// by Isaunoya
#include<bits/stdc++.h>
#define rep(i , x , y) for(register int i = (x) ; i <= (y) ; ++ i)
#define Rep(i , x , y) for(register int i = (x) ; i >= (y) ; -- i)
using namespace std ;
using db = double ;
using ll = long long ;
using uint = unsigned int ;
#define int long long
using pii = pair < int , int > ;
#define ve vector
#define Tp template
#define all(v) v.begin() , v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
#define fir first
#define sec second
// the cmin && cmax
Tp < class T > void cmax(T & x , const T & y) {
if(x < y) x = y ;
}
Tp < class T > void cmin(T & x , const T & y) {
if(x > y) x = y ;
}
// sort , unique , reverse
Tp < class T > void sort(ve < T > & v) {
sort(all(v)) ;
}
Tp < class T > void unique(ve < T > & v) {
sort(all(v)) ;
v.erase(unique(all(v)) , v.end()) ;
}
Tp < class T > void reverse(ve < T > & v) {
reverse(all(v)) ;
}
const int SZ = 0x191981 ;
struct FILEIN {
~ FILEIN () {} char qwq[SZ] , * S = qwq , * T = qwq , ch ;
char GETC() {
return (S == T) && (T = (S = qwq) + fread(qwq , 1 , SZ , stdin) , S == T) ? EOF : * S ++ ;
}
FILEIN & operator >> (char & c) {
while(isspace(c = GETC())) ;
return * this ;
}
FILEIN & operator >> (string & s) {
while(isspace(ch = GETC())) ;
s = "" + ch ;
while(! isspace(ch = GETC())) s += ch ;
return * this ;
}
Tp < class T > void read(T & x) {
bool sign = 1 ;
while((ch = GETC()) < 0x30) if(ch == 0x2d) sign = 0 ;
x = (ch ^ 0x30) ;
while((ch = GETC()) > 0x2f) x = x * 0xa + (ch ^ 0x30) ;
x = sign ? x : -x ;
}
FILEIN & operator >> (int & x) {
return read(x) , * this ;
}
FILEIN & operator >> (signed & x) {
return read(x) , * this ;
}
FILEIN & operator >> (unsigned & x) {
return read(x) , * this ;
}
} in ;
struct FILEOUT {
const static int LIMIT = 0x114514 ;
char quq[SZ] , ST[0x114] ;
signed sz , O ;
~ FILEOUT () {
sz = O = 0 ;
}
void flush() {
fwrite(quq , 1 , O , stdout) ;
fflush(stdout) ;
O = 0 ;
}
FILEOUT & operator << (char c) {
return quq[O ++] = c , * this ;
}
FILEOUT & operator << (string str) {
if(O > LIMIT) flush() ;
for(char c : str) quq[O ++] = c ;
return * this ;
}
Tp < class T > void write(T x) {
if(O > LIMIT) flush() ;
if(x < 0) {
quq[O ++] = 0x2d ;
x = -x ;
}
do {
ST[++ sz] = x % 0xa ^ 0x30 ;
x /= 0xa ;
} while(x) ;
while(sz) quq[O ++] = ST[sz --] ;
return ;
}
FILEOUT & operator << (int x) {
return write(x) , * this ;
}
FILEOUT & operator << (signed x) {
return write(x) , * this ;
}
FILEOUT & operator << (unsigned x) {
return write(x) , * this ;
}
} out ; int k , p , n , m ; const int maxn = 5e4 + 45 ;
int s[maxn] ;
struct mat {
int a[2][2] ;
~ mat () {
clear() ;
}
void clear() {
memset(a , 0 , sizeof(a)) ;
} int * operator [] (int x) {
return a[x] ;
}
} ; mat b[maxn] ;
mat operator * (mat a , mat b) {
mat c ;
for(int i = 0 ; i < 2 ; i ++)
for(int j = 0 ; j < 2 ; j ++)
c[i][j] = 0 ;
for(int i = 0 ; i < 2 ; i ++)
for(int j = 0 ; j < 2 ; j ++)
for(int k = 0 ; k < 2 ; k ++)
c[i][j] = (c[i][j] + a[i][k] * b[k][j] % p) % p ;
return c ;
} mat operator *= (mat & a , mat b) {
return a = a * b ;
} mat qpow(mat f , mat bs , int y) {
for( ; y ; y >>= 1 , bs *= bs)
if(y & 1) f *= bs ;
return f ;
} mat a[maxn] ;
mat sum[maxn << 2] ;
mat ans ; void build(int l , int r , int rt) {
if(l == r) {
sum[rt][0][0] = 0 , sum[rt][0][1] = s[l - 1] ;
sum[rt][1][0] = 1 , sum[rt][1][1] = s[l % n] ;
b[l] = a[l] = sum[rt] ;
return ;
}
int mid = l + r >> 1 ;
build(l , mid , rt << 1) , build(mid + 1 , r , rt << 1 | 1) ;
sum[rt] = sum[rt << 1] * sum[rt << 1 | 1] ;
} void change(int l , int r , int rt , int x , mat v) {
if(l == r) {
sum[rt] = v ;
return ;
}
int mid = l + r >> 1 ;
(x <= mid) ? change(l , mid , rt << 1 , x , v)
: change(mid + 1 , r , rt << 1 | 1 , x , v) ;
sum[rt] = sum[rt << 1] * sum[rt << 1 | 1] ;
} struct que {
int x , y , k ;
} q[maxn << 1] ; signed main() {
#ifdef _WIN64
freopen("testdata.in" , "r" , stdin) ;
#else
ios_base :: sync_with_stdio(false) ;
cin.tie(nullptr) , cout.tie(nullptr) ;
#endif
// code begin.
in >> k >> p >> n ;
for(int i = 0 ; i < n ; i ++) in >> s[i] ;
build(1 , n , 1) ;
in >> m ;
for(int i = 1 ; i <= m ; i ++)
in >> q[i].x >> q[i].y ;
for(int i = 1 ; i <= m ; i ++) {
q[i].y %= p ;
q[i].k = 1 ;
q[i + m] = q[i] ;
q[i + m].x ++ ;
q[i + m].k -- ;
}
m <<= 1 ;
sort(q + 1 , q + m + 1 ,
[](const que & x , const que & y) {
return x.x < y.x ;
}) ;
while(m > 0 && q[m].x > k) -- m ;
ans.clear() ;
ans[0][1] = 1 ;
int lasbl = 0 ;
for(int i = 1 , j = 1 ; i <= m ; i = ++ j) {
int bl = (q[i].x - 1) / n ;
while(j < m && bl == (q[j + 1].x - 1) / n) ++ j ;
ans = qpow(ans , sum[1] , bl - lasbl) ;
lasbl = bl ;
for(int qwq = i ; qwq <= j ; qwq ++) {
int d = (q[qwq].x - 1) % n + 1 ;
b[d][q[qwq].k][1] = q[qwq].y ;
change(1 , n , 1 , d , b[d]) ;
}
if(bl == k / n) break ;
ans = ans * sum[1] ;
lasbl = bl + 1 ;
for(int qwq = i ; qwq <= j ; qwq ++) {
int d = (q[qwq].x - 1) % n + 1 ;
b[d] = a[d] ;
change(1 , n , 1 , d , b[d]) ;
}
}
int bl = k / n ;
ans = qpow(ans , sum[1] , bl - lasbl) ;
for(int i = 1 ; i <= k % n ; i ++)
ans *= b[i] ;
out << ans[0][0] << '\n' ;
return out.flush() , 0 ;
// code end.
}

CF575A Fibonotci [线段树+矩阵快速幂]的更多相关文章

  1. Wannafly Winter Camp 2019.Day 8 div1 E.Souls-like Game(线段树 矩阵快速幂)

    题目链接 \(998244353\)写成\(99824435\)然后调这个线段树模板1.5h= = 以后要注意常量啊啊啊 \(Description\) 每个位置有一个\(3\times3\)的矩阵, ...

  2. 线段树+矩阵快速幂 Codeforces Round #373 (Div. 2) E

    http://codeforces.com/contest/719/problem/E 题目大意:给你一串数组a,a[i]表示第i个斐波那契数列,有如下操作 ①对[l,r]区间+一个val ②求出[l ...

  3. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

  4. Codeforces 719E [斐波那契区间操作][矩阵快速幂][线段树区间更新]

    /* 题意:给定一个长度为n的序列a. 两种操作: 1.给定区间l r 加上某个数x. 2.查询区间l r sigma(fib(ai)) fib代表斐波那契数列. 思路: 1.矩阵操作,由矩阵快速幂求 ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. 【XSY2524】唯一神 状压DP 矩阵快速幂 FFT

    题目大意 给你一个网格,每个格子有概率是\(1\)或是\(0\).告诉你每个点是\(0\)的概率,求\(1\)的连通块个数\(\bmod d=0\)的概率. 最开始所有格子的概率相等.有\(q\)次修 ...

  7. 培训补坑(day10:双指针扫描+矩阵快速幂)

    这是一个神奇的课题,其实我觉得用一个词来形容这个算法挺合适的:暴力. 是啊,就是循环+暴力.没什么难的... 先来看一道裸题. 那么对于这道题,显然我们的暴力算法就是枚举区间的左右端点,然后通过前缀和 ...

  8. 【对不同形式矩阵的总结】WC 2009 最短路径问题(线段树+矩阵乘法)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4150 ​ 一个 \(6\times n\) 的网格图,每个格点有一个初始权值.有两种操作: 修改一个格子的权值 求 ...

  9. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

随机推荐

  1. JUC中的锁

    ★.不同角度的锁的理解: #1.公平锁.非公平锁 公平锁:eg: ReentrantLock 关键词:先来先服务. 加锁前检查是否有排队等锁的线程,若有,当前线程参与排队,先排的线程优先获取锁.相对没 ...

  2. Java DTO(data transfer object)的理解

    首先明白springboot每层 model层 model层即数据库实体层,也被称为entity层,pojo层. 一般数据库一张表对应一个实体类,类属性同表字段一一对应. Model层是数据层: Ta ...

  3. Rust入坑指南:步步为营

    俗话说:"测试写得好,奖金少不了." 有经验的开发人员通常会通过单元测试来保证代码基本逻辑的正确性.如果你是一名新手开发者,并且还没体会到单元测试的好处,那么建议你先读一下我之前的 ...

  4. 记一次MySQL中Waiting for table metadata lock的解决方法

    最近项目中的数据库查询经常挂起,应用程序启动后也报操作超时.测试人员就说数据库又挂了(貌似他们眼中的连接失败,查询无果都是挂了),通过 show processlist 一看,满屏都是 Waiting ...

  5. django后台处理前端上传和显示图片

      1:项目根目录存放图片的目录 2:settings.py  添加 MEDIA_ROOT = os.path.join(BASE_DIR, "media") 3:url.py 添 ...

  6. 【小方法】navicate for mysql使数据库可以识别中文

    右键选择新建数据库,将字符集与排序规则改成utf-8形式

  7. vue简单实现

    vue简单实现 vue的三个核心 虚拟dom, 双向绑定 Proxy,

  8. 阿里云ECS服务器,mysql无法外网访问

    可参考https://www.jianshu.com/p/7a41734b502e 问题原因 未授权远程IP地址登录.root用户默认只能在localhost也就是本机登录 解决方案 在服务器上登录数 ...

  9. 《Java 8 in Action》Chapter 11:CompletableFuture:组合式异步编程

    某个网站的数据来自Facebook.Twitter和Google,这就需要网站与互联网上的多个Web服务通信.可是,你并不希望因为等待某些服务的响应,阻塞应用程序的运行,浪费数十亿宝贵的CPU时钟周期 ...

  10. 小白学 Python 数据分析(9):Pandas (八)数据预处理(2)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...