基于matlab的傅里叶变换
原文出处https://blog.csdn.net/qq_37366291/article/details/79832886
例子1
作用:使用傅里叶变换找出隐藏在噪声中的信号的频率成分。(指定信号的参数,采样频率为1 kHz,信号持续时间为1秒。)
Fs = 1000; % 采样频率
T = 1/Fs; % 采样周期
L = 1000; % 信号长度
t = (0:L-1)*T; % 时间向量
%%形成一个信号,包含振幅为0.7的50hz正弦信号和振幅为1的120hz正弦信号。
S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
X = S + 2*randn(size(t)); %用零均值的白噪声破坏信号,方差为4。
plot(1000*t(1:50),X(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')1234567891011121314
由上图可知:从时域中我们很难观察到信号的频率成分。怎么办呢?当然使用强大的傅里叶变换。
Y = fft(X); %计算傅里叶变换,X是加噪后的信号
%%
%计算双边谱P2。然后计算基于P2的单面谱P1和偶值信号长度L。(不太理解。。。)
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
%%
%定义频率域f并绘制单面振幅谱P1。由于增加的噪音,振幅不完全是0.7和1。平均而言,较长的信号产生更好的频率近似。
f = Fs*(0:(L/2))/L;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')123456789101112131415
%%
%现在,对原始的,未被损坏的信号进行傅里叶变换,并得到准确的振幅,0.7和1.0。
Y = fft(S); %S时原始的,没有加噪的信号。
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
plot(f,P1)
title('Single-Sided Amplitude Spectrum of S(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')1234567891011
加上一点自己的理解。
例子2
作用:利用傅里叶变换,将高斯脉冲从时域转换为频域。
Fs = 100; % Sampling frequency
t = -0.5:1/Fs:0.5; % Time vector
L = length(t); % Signal length
X = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));
plot(t,X)
title('Gaussian Pulse in Time Domain')
xlabel('Time (t)')
ylabel('X(t)')12345678910
%%
%要使用fft函数将信号转换为频域,首先要确定一个新的输入长度,该输入长度是原信号长度的下一个2次方。
%为了提高fft的性能,这将使信号X以尾随零的形式出现。
n = 2^nextpow2(L);
Y = fft(X,n);
f = Fs*(0:(n/2))/n;
P = abs(Y/n);
plot(f,P(1:n/2+1))
title('Gaussian Pulse in Frequency Domain')
xlabel('Frequency (f)')
ylabel('|P(f)|')12345678910111213
例子3余弦波
比较时域和频域的余弦波。指定信号的参数,采样频率为1kHz,信号持续时间为1秒。
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sampling period
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
x1 = cos(2*pi*50*t); % First row wave
x2 = cos(2*pi*150*t); % Second row wave
x3 = cos(2*pi*300*t); % Third row wave
X = [x1; x2; x3];
for i = 1:3
subplot(3,1,i)
plot(t(1:100),X(i,1:100))
title(['Row ',num2str(i),' in the Time Domain'])
end12345678910111213141516
n = 2^nextpow2(L);
dim = 2;
Y = fft(X,n,dim);
P2 = abs(Y/n);
P1 = P2(:,1:n/2+1);
P1(:,2:end-1) = 2*P1(:,2:end-1);
for i=1:3
subplot(3,1,i)
plot(0:(Fs/n):(Fs/2-Fs/n),P1(i,1:n/2))
title(['Row ',num2str(i), ' in the Frequency Domain'])
end1234567891011
基于matlab的傅里叶变换的更多相关文章
- 基于MATLAB的离散小波变换
申明,本文非笔者原创,原文转载自: 基于Matlab的离散小波变换 http://blog.sina.com.cn/s/blog_725866260100ryh3.html 简介 在 ...
- 基于MATLAB的GUI(Graphical User Interface)音频实时显示设计
摘要:本文章的设计主要讲基于matlab的gui音频实时显示设计,此次设计的gui相当于一个简洁的音乐播放器,界面只有”录音“和”播放“两个控件,哈哈,够简洁吧.通过”录音“按钮可以实现声音从电脑的声 ...
- 基于MATLAB边缘检测算子的实现
基于MATLAB边缘检测算子的实现 作者:lee神 1. 概述 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点.图像属性中的显著变化通常反映了属性的重要 ...
- 基于MATLAB的人脸识别算法的研究
基于MATLAB的人脸识别算法的研究 作者:lee神 现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别:从智能手机的人脸识别的性别识别:如今无人驾驶汽车更是应用了大量的机器 ...
- 基于MATLAB的中值滤波均值滤波以及高斯滤波的实现
基于MATLAB的中值滤波均值滤波以及高斯滤波的实现 作者:lee神 1. 背景知识 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. 中值滤 ...
- 基于MATLAB搭建的DDS模型
基于MATLAB搭建的DDS模型 说明: 累加器输出ufix_16_6数据,通过cast切除小数部分,在累加的过程中,带小数进行运算最后对结果进行处理,这样提高了计算精度. 关于ROM的使用: 直接设 ...
- [ZZ] 基于Matlab的标记分水岭分割算法
基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching obj ...
- 基于MATLAB System Generator 搭建Display Enhancement模型
基于MATLAB System Generator 搭建Display Enhancement模型
- 基于Matlab的多自由度系统固有频率及振型计算
可参考文涛,基于Matlab语言的多自由度振动系统的固有频率及主振型计算分析,2007 对于无阻尼系统 [VEC,VAL]=eig(inv(A)*K) 对于有阻尼系统,参考振动论坛计算程序 输入M,D ...
随机推荐
- 工控安全入门(三)—— 再解S7comm
之前的文章我们都是在ctf的基础上学习工控协议知识的,显然这样对于S7comm的认识还不够深刻,这次就做一个实战补全,看看S7comm还有哪些值得我们深挖的地方. 本篇是对S7comm的补全和实战,阅 ...
- springboot核心技术(五)-----消息(rabbitmq)
消息 1. 大多应用中,可通过消息服务中间件来提升系统异步通信.扩展解耦能力 2. 消息服务中两个重要概念: 消息代理(message broker)和目的地(destination) 当消息发送者发 ...
- DSP日志打印 LOG_printf
LOG_printf 依托BIOS环境,需要引用下列头文件: #include <std.h> #include <log.h> 并且,要在.tcf环境中添加一个LOG ...
- idea使用及其快捷键(Jetbrains很多是通用的)(转)
Java程序员肯定会使用idea进行开发,因为其非常强大,很好用,而且可以很傻瓜式导入gradle,用来做SSM项目也很简单 学生是可以使用教育邮箱或者上床学生证使用免费的jetbrains全家桶的, ...
- MySQL数据库基本使用
一 .数据库概述 数据库就是以一定格式进行组织的数据的集合.通俗来看数据库就是用户计算机上 一些具有特殊格式的数据文件的集合. 数据库也可以理解为表格,大家都知道表格都是由表名.表头.数据等几部分组成 ...
- 汇总下几个IP计算/转换的shell小脚本-转
原文:http://blog.chinaunix.net/uid-20788470-id-1841646.html 1. IP转换为整数> vi ip2num.sh#!/bin/bash# ...
- Jquery点击加载更多
一.点击加载更多有点像分页获取数据类似,下面是本人写的一个简单的小例子 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitiona ...
- 2019-1-29-Roslyn-使用-WriteLinesToFile-解决参数过长无法传入
title author date CreateTime categories Roslyn 使用 WriteLinesToFile 解决参数过长无法传入 lindexi 2019-01-29 16: ...
- PHP之文件的锁定、上传与下载的方法
1.文件锁定 现在都在讲究什么分布式.并发等,实际上文件的操作也是并发的,在网络环境下,多个用户在同一时刻访问页面,对同一服务器上的同一文件进行着读取,如果,这个用户刚好读到一半,另一个用户就写入了消 ...
- USACO 2.1.4
/* ID: weitong4 LANG: C++ TASK: holstein */ #include<stdio.h> #include<string.h> #define ...