UVA 11992 ——线段树(区间修改)
解题思路:
将矩阵每一行建立一棵线段树,进而变成一维问题求解。注意数组要开 4*N
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int maxn = + ; const int INF = ;
int q, x1_, x2_, y1, y2, v_add, v_set; struct segment_tree {
int sumv[4*maxn],minv[4*maxn],maxv[4*maxn];
int addv[4*maxn], setv[4*maxn];
void maintain(int o, int L, int R) {
int lc = *o, rc = *o + ;
sumv[o] = minv[o] = maxv[o] = ;
if(setv[o] >= ) {
sumv[o] = setv[o] * (R-L+);
minv[o] = maxv[o] = setv[o];
}
else if(R > L) {
sumv[o] = sumv[lc] + sumv[rc];
minv[o] = min(minv[lc], minv[rc]);
maxv[o] = max(maxv[lc], maxv[rc]);
}
minv[o] += addv[o]; maxv[o] += addv[o]; sumv[o] += addv[o] * (R-L+);
}
void pushdown(int o) {
int lc = *o, rc = *o+;
if(setv[o] >= ) {
setv[lc] = setv[rc] = setv[o];
addv[lc] = addv[rc] = ;
setv[o] = -;
}
if(addv[o] > ) {
addv[lc] += addv[o];
addv[rc] += addv[o];
addv[o] = ;
}
}
void update_add(int o, int L, int R) {
int lc = *o, rc = o*+;
if(y1 <= L && y2 >= R) {
addv[o] += v_add;
}
else {
pushdown(o);
int M = L + (R-L)/;
if(y1 <= M) update_add(lc, L, M); else maintain(lc, L, M);
if(y2 > M) update_add(rc, M+, R);else maintain(rc, M+, R);
}
maintain(o, L, R);
}
void update_set(int o, int L, int R) {
int lc = *o, rc = o*+;
if(y1 <= L && y2 >= R) {
setv[o] = v_set;
addv[o] = ;
}
else {
pushdown(o);
int M = L + (R-L)/;
if(y1 <= M) update_set(lc, L, M); else maintain(lc, L, M);
if(y2 > M) update_set(rc, M+, R); else maintain(rc, M+, R);
}
maintain(o, L, R);
} void query(int o, int L, int R, int add, int& _min, int& _max, int& _sum) {
if(setv[o] >= ) {
_sum += (add+setv[o]+addv[o]) * (min(R, y2)-max(L, y1)+);
_min = min(_min, setv[o]+addv[o]+add);
_max = max(_max, setv[o]+addv[o]+add);
}
else if(y1 <= L && y2 >= R) {
_sum += sumv[o] + add * (R-L+);
_min = min(_min, minv[o]+add);
_max = max(_max, maxv[o]+add);
}
else {
int M = L + (R-L)/;
if(y1 <= M) query(o*, L, M, add+addv[o], _min, _max, _sum);
if(y2 > M) query(o*+, M+, R, add+addv[o], _min, _max, _sum);
}
} void init() {
memset(setv, -, sizeof setv);
memset(addv, , sizeof addv);
memset(sumv, , sizeof sumv);
memset(minv, , sizeof minv);
memset(maxv, , sizeof maxv);
}
};
int r, c, m;
const int maxr = + ; segment_tree tree[maxr]; int main(int argc, const char * argv[]) { while(scanf("%d%d%d", &r, &c, &m) == ){ for(int i = ; i < maxr; i++) tree[i].init();
for(int i = ; i < m; i++) { scanf("%d%d%d%d%d", &q, &x1_, &y1, &x2_, &y2);
if(q == ){
scanf("%d", &v_add);
for(int x = x1_; x <= x2_; x++) {
tree[x].update_add(, , c);
}
}
if(q == ) {
scanf("%d", &v_set);
for(int x = x1_; x <= x2_; x++) {
tree[x].update_set(, , c);
}
}
if(q == ){
int gmin = INF, gmax = -INF, gsum = ;
for(int x = x1_; x <= x2_; x++) {
int _min = INF, _max = -INF, _sum = ;
tree[x].query(, , c, ,_min, _max, _sum);
gsum += _sum;
gmin = min(gmin, _min);
gmax = max(gmax, _max);
}
printf("%d %d %d\n", gsum, gmin, gmax);
}
}
}
return ;
}
UVA 11992 ——线段树(区间修改)的更多相关文章
- UVa 11992 (线段树 区间修改) Fast Matrix Operations
比较综合的一道题目. 二维的线段树,支持区间的add和set操作,然后询问子矩阵的sum,min,max 写完这道题也是醉醉哒,代码仓库里还有一份代码就是在query的过程中也pushdown向下传递 ...
- Codeforces Round #442 (Div. 2) E Danil and a Part-time Job (dfs序加上一个线段树区间修改查询)
题意: 给出一个具有N个点的树,现在给出两种操作: 1.get x,表示询问以x作为根的子树中,1的个数. 2.pow x,表示将以x作为根的子树全部翻转(0变1,1变0). 思路:dfs序加上一个线 ...
- 题解报告:hdu 1698 Just a Hook(线段树区间修改+lazy懒标记的运用)
Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for m ...
- poj 2528 线段树区间修改+离散化
Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...
- E - Just a Hook HDU - 1698 线段树区间修改区间和模版题
题意 给出一段初始化全为1的区间 后面可以一段一段更改成 1 或 2 或3 问最后整段区间的和是多少 思路:标准线段树区间和模版题 #include<cstdio> #include& ...
- HDU 4027 Can you answer these queries? (线段树区间修改查询)
描述 A lot of battleships of evil are arranged in a line before the battle. Our commander decides to u ...
- poj2528 Mayor's posters(线段树区间修改+特殊离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- hiho_1078_线段树区间修改
题目 给定一组数,要求进行若干次操作,这些操作可以分为两种类型: (1) CMD 1 beg end value 将数组中下标在[beg, end] 区间内数字都变为value (2) CMD 2 b ...
- HDU - 1698 线段树区间修改,区间查询
这就是很简单的基本的线段树的基本操作,区间修改,区间查询,对区间内部信息打上laze标记,然后维护即可. 我自己做的时候太傻逼了...把区间修改写错了,对给定区间进行修改的时候,mid取的是节点的左右 ...
随机推荐
- 跨境网上收款 找PayPal没错(php如何实现paypal支付)
开发前准备 在我的博客中 有介绍如何获取ID 和 secret : 好了 在上一篇博客中详细介绍了也不少: 跨境网上收款 找PayPal没错(如何获取ID 和 secret) http://blog. ...
- 【JZOJ4761】【NOIP2016提高A组模拟9.7】鼎纹
题目描述 输入 输出 样例输入 2 3 4 4 2 1100 0110 1100 10 01 10 00 2 2 2 2 11 11 01 10 样例输出 YES NO 数据范围 解法 由于鼎纹中的第 ...
- linux下的OpenCV安装&学习笔记
http://www.linuxdiyf.com/viewarticle.php?id=20731 (本想在fedora下安装编译的,但目前opencv官网.sourceforge等网站都无法访问下载 ...
- MAC+VS Code+Python+Markdown调试配置
目录 VS Code官网下载 VS Code插件推荐 VS Code Python环境配置 Markdown配置 VS Code官方文档 VS Code官网下载 VS Code官网下载地址 VS Co ...
- java8的stream系列教程之filter过滤集合的一些属性
贴代码 List<Student> lists = new ArrayList<>(); Student student = new Student(); student.se ...
- SDUT-3373_数据结构实验之查找一:二叉排序树
数据结构实验之查找一:二叉排序树 Time Limit: 400 ms Memory Limit: 65536 KiB Problem Description 对应给定的一个序列可以唯一确定一棵二叉排 ...
- Python2 生成器 简介
1. A generator: provide a kind of function that can return an intermediate result ("the next va ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十四章:曲面细分阶段
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十四章:曲面细分阶段 代码工程地址: https://github. ...
- Java练习 SDUT-2670_3-1 Point类的构造函数
3-1 Point类的构造函数 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 通过本题目的练习可以掌握类的构造函数的定 ...
- UVA_401:Palindromes
AC:Time(29ms) C++ 4.8.2 #include<stdio.h> #include<string.h> char * mirstr = "A ...