Codeforces Round #612 (Div. 2)
https://codeforces.com/contest/1287/
A - Angry Students
题意:求A后面的P最长连续有几个?
题解:?
int n;
char s[200005];
void test_case() {
scanf("%d%s", &n, s + 1);
int cnt = 0, ans = 0;
int b = 1;
while(b <= n && s[b] == 'P')
++b;
for(int i = b; i <= n; ++i) {
if(s[i] == 'P')
++cnt;
else {
ans = max(ans, cnt);
cnt = 0;
}
}
ans = max(ans, cnt);
printf("%d\n", ans);
}
一种不需要判断结尾的思路是,一边统计cnt,一边尝试更新ans。
B - Hyperset
题意:每个属性只有3种值。定义三张牌是一个SET,当他们每个属性要么全等要么两两不同。
题解:枚举两张牌,可以确定第三张牌。
注:原来没有重复的牌的啊,这个constraint完全没必要啊,把这题变成一个送分题了。
struct TrieNode {
int data;
int nxt[3];
void Init() {
data = 0;
memset(nxt, 0, sizeof(nxt));
}
};
struct Trie {
static const int MAXN = 45000;
TrieNode tn[MAXN + 5];
int root, top;
int NewNode() {
tn[++top].Init();
return top;
}
void Init() {
top = 0;
root = NewNode();
}
void Insert(int *a, int len, int data) {
int cur = root;
for(int i = 1; i <= len; ++i) {
int &nxt = tn[cur].nxt[a[i]];
if(!nxt)
nxt = NewNode();
cur = nxt;
}
tn[cur].data += data;
}
int Query(int *a, int len) {
int cur = root;
for(int i = 1; i <= len; ++i) {
int &nxt = tn[cur].nxt[a[i]];
if(!nxt)
return 0;
cur = nxt;
}
return tn[cur].data;
}
} trie;
int n, k;
char s[35];
int st[128], t[1505][35], r[35];
void test_case() {
st['S'] = 0;
st['E'] = 1;
st['T'] = 2;
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; ++i) {
scanf("%s", s + 1);
for(int j = 1; j <= k; ++j)
t[i][j] = st[s[j]];
trie.Insert(t[i], k, 1);
}
ll sum = 0;
for(int i1 = 1; i1 <= n; ++i1) {
for(int i2 = i1 + 1; i2 <= n; ++i2) {
int ty = 1;
for(int j = 1; j <= k; ++j) {
r[j] = (3 - (t[i1][j] + t[i2][j]) % 3) % 3;
if(r[j] != t[i1][j])
ty = 0;
}
if(ty == 0)
sum += trie.Query(r, k);
else
sum += trie.Query(r, k) - 2;
}
}
printf("%lld\n", sum / 3);
}
map<ll, int> M;
int n, k;
char s[35];
int st[128], t[1505][35];
ll val[1505];
void test_case() {
st['S'] = 0;
st['E'] = 1;
st['T'] = 2;
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; ++i) {
scanf("%s", s + 1);
ll r = 0;
for(int j = 1; j <= k; ++j) {
t[i][j] = st[s[j]];
r = 3 * r + t[i][j];
}
M[r]++;
val[i] = r;
}
ll sum = 0;
for(int i1 = 1; i1 <= n; ++i1) {
for(int i2 = i1 + 1; i2 <= n; ++i2) {
ll r = 0;
for(int j = 1; j <= k; ++j) {
int tmp = (3 - (t[i1][j] + t[i2][j]) % 3) % 3;
r = 3ll * r + tmp;
}
auto it = M.find(r);
if(it != M.end()) {
if(r != val[i1])
sum += it->second;
else
sum += (it->second) - 2;
}
}
}
printf("%lld\n", sum / 3);
}
unordered_map<ll, int> M;
int n, k;
char s[35];
int st[128], t[1505][35];
ll val[1505];
void test_case() {
M.reserve(3000);
st['S'] = 0;
st['E'] = 1;
st['T'] = 2;
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; ++i) {
scanf("%s", s + 1);
ll r = 0;
for(int j = 1; j <= k; ++j) {
t[i][j] = st[s[j]];
r = 3 * r + t[i][j];
}
M[r]++;
val[i] = r;
}
ll sum = 0;
for(int i1 = 1; i1 <= n; ++i1) {
for(int i2 = i1 + 1; i2 <= n; ++i2) {
ll r = 0;
for(int j = 1; j <= k; ++j) {
int tmp = (3 - (t[i1][j] + t[i2][j]) % 3) % 3;
r = 3ll * r + tmp;
}
auto it = M.find(r);
if(it != M.end()) {
if(r != val[i1])
sum += it->second;
else
sum += (it->second) - 2;
}
}
}
printf("%lld\n", sum / 3);
}
Trie最快,但是一开始开太紧空间WA了一发。事实上真的没必要省空间,有多大开多大。
C - Garland
这个怎么贪心的啊?得看看别人怎么搞。
题意:给一列数字,是一个自然数的排列,假如是0表示待填。填上这个序列使得复杂度最小。每个相邻的奇偶对贡献1复杂度。
题解:dp,由于奇数之间是等价的,偶数之间也是等价的,每种填法对后面的影响也是只有最后一位数字。设dp[i][j][0/1]为前i个位置填了j个奇数,并且最后一位的奇偶性为0/1的最小复杂度。
int a[105];
int dp[105][105][2];
void test_case() {
int n;
scanf("%d", &n);
int cnt1 = (n + 1) / 2;
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
if(a[i]) {
if(a[i] & 1)
--cnt1;
}
}
memset(dp, INF, sizeof(dp));
dp[0][0][0] = 0;
dp[0][0][1] = 0;
for(int i = 1; i <= n; ++i) {
if(a[i]) {
int t = a[i] & 1;
for(int j = 0; j <= cnt1; ++j) {
dp[i][j][t] = dp[i - 1][j][t];
dp[i][j][t] = min(dp[i][j][t], dp[i - 1][j][1 - t] + 1);
}
} else {
for(int j = 1; j <= cnt1; ++j) {
dp[i][j][1] = dp[i - 1][j - 1][1];
dp[i][j][1] = min(dp[i][j][1], dp[i - 1][j - 1][0] + 1);
}
for(int j = 0; j <= cnt1; ++j) {
dp[i][j][0] = dp[i - 1][j][1] + 1;
dp[i][j][0] = min(dp[i][j][0], dp[i - 1][j][0]);
}
}
/*for(int j = 0; j <= cnt1; ++j) {
for(int t = 0; t <= 1; ++t)
printf("dp[%d][%d][%d]=%d\n", i, j, t, dp[i][j][t]);
}
puts("");*/
}
printf("%d\n", min(dp[n][cnt1][0], dp[n][cnt1][1]));
}
int a[105];
int dp[105][105][2];
void test_case() {
int n, c;
scanf("%d", &n);
c = (n + 1) / 2;
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
memset(dp, INF, sizeof(dp));
dp[0][0][0] = 0;
dp[0][0][1] = 0;
for(int i = 1; i <= n; ++i) {
if(a[i]) {
int t = a[i] & 1;
for(int j = 0; j <= c; ++j) {
dp[i][j + t][t] = dp[i - 1][j][t];
dp[i][j + t][t] = min(dp[i][j + t][t], dp[i - 1][j][1 - t] + 1);
}
} else {
for(int j = 1; j <= c; ++j) {
dp[i][j][1] = dp[i - 1][j - 1][1];
dp[i][j][1] = min(dp[i][j][1], dp[i - 1][j - 1][0] + 1);
}
for(int j = 0; j <= c; ++j) {
dp[i][j][0] = dp[i - 1][j][1] + 1;
dp[i][j][0] = min(dp[i][j][0], dp[i - 1][j][0]);
}
}
/*for(int j = 0; j <= cnt1; ++j) {
for(int t = 0; t <= 1; ++t)
printf("dp[%d][%d][%d]=%d\n", i, j, t, dp[i][j][t]);
}
puts("");*/
}
printf("%d\n", min(dp[n][c][0], dp[n][c][1]));
}
贪心的解法复杂度低一个层次。
D - Numbers on Tree
题意:给一棵n<=2000的有根树,规定每个数的子树中有多少个节点的val比根节点的严格小。给这棵树填上任意一种合法的val(每个值都在[1,10^9]且满足上一句话)或报告不存在。
题解:树的这类问题可能都是先往递归的方向考虑,假如是叶子,不用多说之间返回1,否则是中间节点。假如中间节点只有一棵子树,而且子树中的值是相异的,那么随便插进去然后把后面的数往后面挤,得到的也还是值全部相异的树。否则至少有两棵子树,假如他们的值也都是相异的也可以仿照上面解决,可惜搞不得,有可能不存在一个位置刚好满足要求。
这时候很显然的子树之间是没有关系的,可以给一棵子树的值整体提高一个水平,使得得到的值也是相异的,最简单的是加上上一棵子树的最大值(而不一定是size,假如没有进行算不并列的排名的话)。
事实上并不一定需要同一棵子树占据同一段连续的位置,直接全部混在一起算不并列的排名也可以。
int n, root;
int c[2005];
vector<int> G[2005];
vector<pii> vec[2005];
void dfs(int u) {
for(auto &v : G[u]) {
dfs(v);
for(auto &j : vec[v])
vec[u].push_back(j);
}
if(c[u] > vec[u].size()) {
puts("NO");
exit(0);
}
sort(vec[u].begin(), vec[u].end());
for(int i = 0; i < vec[u].size(); ++i)
vec[u][i].first = i + 1;
vec[u].insert(vec[u].begin() + c[u], {c[u] + 1, u});
for(int i = c[u] + 1; i < vec[u].size(); ++i)
++vec[u][i].first;
}
void test_case() {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
int p;
scanf("%d%d", &p, &c[i]);
if(p)
G[p].push_back(i);
else
root = i;
}
dfs(root);
for(auto &j : vec[root])
swap(j.first, j.second);
sort(vec[root].begin(), vec[root].end());
puts("YES");
for(auto &j : vec[root])
printf("%d ", j.second);
puts("");
}
注意vector中insert是一个迭代器,而且确实可以在 for auto 中进行交换(应该在遍历中不会改变其他元素的操作都可以吧?)
Codeforces Round #612 (Div. 2)的更多相关文章
- Codeforces Round #612 (Div. 2) 前四题题解
这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...
- Codeforces Round #612 (Div. 2)C. Garland
第四次写题解,请多指教! http://codeforces.com/contest/1287/problem/C题目链接 题目大意是有一个数字串挂有1-n n个数字,现在上面缺失了一些数字,让你找出 ...
- Codeforces Round #612 (Div. 2) (A-D)
直 接看所有A后面连续P的个数最大值 #include<cstring> #include<cstdio> #include<set> #include<io ...
- 【codeforces】Codeforces Round #612 (Div. 2) C. Garland——DP
题目链接 贪心模拟了半天,最后放弃了 题意 给你一串从1−n1-n1−n的序列,其中部分未知(表示为0),补全序列使得相邻数值奇偶性相反的数量最少 相邻数值的奇偶性相反:两个相邻的两个数值,其中一个为 ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
随机推荐
- @loj - 2478@「九省联考 2018」林克卡特树
目录 @description@ @solution@ @part - 1@ @part - 2@ @accepted code@ @details@ @description@ 小 L 最近沉迷于塞 ...
- 13 Free GIS Software Options: Map the World in Open Source
13 Free GIS Software Options: Map the World in Open Source A LIST OF FREE OPEN SOURCE MAPPING SOFT ...
- 2016国产开源软件Top100(Q1)
2016国产开源软件Top100(Q1) 随着互联网的发展.开放标准的普及和虚拟化技术的应用等诸多IT新领域的创新及拓展,开源技术凭借其开放性.低成本.稳定性.灵活性.安全性和技术创新性等特点迅速走向 ...
- HDU3746 Teacher YYF 题解 KMP算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3746 题目大意:给你一个串 \(s\) ,要求 \(s\) 的开头或结尾添加最少的字符,使得添加后的串 ...
- CSS3 Box-shadow 阴影效果用法
一.基本用法: 二.内阴影用法: 三.阴影扩展长度值: box-shadow: 4rpx 4rpx 8rpx #aaa;
- 版本号/缓存刷新 laravel mix函数
很多开发者会给编译的前端资源添加时间戳或者唯一令牌后缀以强制浏览器加载最新版本而不是代码的缓存副本.Mix 可以使用 version 方法为你处理这种场景. version 方法会自动附加唯一哈希到已 ...
- H3C 单区域OSPF配置示例一(续)
- H3C 路由计算
- [转]C#操作Word的超详细总结
本文中用C#来操作Word,包括: 创建Word: 插入文字,选择文字,编辑文字的字号.粗细.颜色.下划线等: 设置段落的首行缩进.行距: 设置页面页边距和纸张大小: 设置页眉.页码: 插入图片,设置 ...
- SELECT command denied to user 'username'@'ip' for table 'user'错误处理
错误信息 使用RDS for MySQL,程序执行查询SQL时报错如下: SELECT command denied to user 'username'@'ip' for table 'user' ...