题意:给定一张无向图,每条边都有一个通过的概率 ,如果无法通过,那么就要回到起点重新出发
从起点到终点的时间固定为K,如果成功到达,又需要额外花费K的时间,问走S次的最小期望时间

思路:这道题分为两部分,第一部分是求spfa,第二部分是通过得出的最大的概率的那条路算出答案;怎么算呢,通过最短路求出后,设期望值为E,成功概率为p,如果成功,期望值为p*2k,如果不成功,期望值为(1-p)*(E+2k)因此E=p*2k+(1-p)*(E+2k),化简为E=2k/p最后再乘上s

 #include<cstdio>
#include<algorithm>
#include<math.h>
#include<string.h>
#include<queue>
using namespace std;
const int maxn=1e4+;
const int inf=0x3f3f3f3f;
int head[maxn],num=-;
int s,t;
double dis[maxn];int vis[maxn];
struct node
{
int v,next;
double w;
}G[maxn];
void build(int u,int v,double w)
{
G[++num].v=v;G[num].w=w;G[num].next=head[u];head[u]=num;
G[++num].v=u;G[num].w=w;G[num].next=head[v];head[v]=num;
}
void init()
{
memset(head,-,sizeof(head));
num=-;
}
void SPFA()
{
memset(dis,,sizeof(dis));
dis[]=;
queue<int>q;
q.push();
vis[]=;
while(!q.empty()){
// printf("11111111111111111111111111\n");
int u=q.front();
q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=G[i].next){
int v=G[i].v;double w=G[i].w;
if(dis[v]<dis[u]*w){
dis[v]=dis[u]*w;
if(!vis[v]){
q.push(v);
vis[v]=;
}
}
}
}
}
int main()
{
int T;
scanf("%d",&T);
int cnt=;
while(T--){
init();
int n,m,s,k;
scanf("%d%d%d%d",&n,&m,&s,&k);
for(int i=;i<=m;i++){
int u,v;double w;
scanf("%d%d%lf",&u,&v,&w);
w=w/;
build(u,v,w);
}
SPFA();
double ans=dis[n-];
double tmp=1.0/ans;
tmp=(double)(tmp**k*s);
printf("Case %d: %lf\n",++cnt,tmp);
}
return ;
}

 

概率dp light 1321的更多相关文章

  1. 概率DP light oj 1030

    t组数据 n块黄金 到这里就捡起来 出发点1 到n结束  点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6  如果满6个的话 否则 ...

  2. 概率DP light oj 1038

    t个数据 然后一个n 输出变成1的期望 看个数据 dp[n]代表n变成1的期望 cnt代表因子个数 pi代表因子 那么dp[n]=1/cnt*(dp[n/p1]+1)+1/cnt*(dp[n/p2]+ ...

  3. Light OJ 1317 Throwing Balls into the Baskets 概率DP

    n个人 m个篮子 每一轮每一个人能够选m个篮子中一个扔球 扔中的概率都是p 求k轮后全部篮子里面球数量的期望值 依据全期望公式 进行一轮球数量的期望值为dp[1]*1+dp[2]*2+...+dp[ ...

  4. 动态规划——概率dp

    所谓概率dp,用动态规划的思想找到一个事件中可能发生的所有情况,然后找到符合要求的那些情况数,除以总数便可以得到符合要求的事件发生的概率.其核心思想还是通过dp来得到事件发生的所有情况,很类似在背包专 ...

  5. A Dangerous Maze (II) LightOJ - 1395(概率dp)

    A Dangerous Maze (II) LightOJ - 1395(概率dp) 这题是Light Oj 1027的加强版,1027那道是无记忆的. 题意: 有n扇门,每次你可以选择其中一扇.xi ...

  6. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

  7. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  8. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  9. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

随机推荐

  1. eclipse中配置maven环境

    一.配置setting.xml文件 1.首先将下载好的maven打开,打开文件夹,首先就需要对maven安装目录下有个config文件夹,在文件夹下有settings.xml文件.settings里面 ...

  2. linux命令解压压缩rar文件的详细步骤

    参考文件:https://www.cnblogs.com/qinglin/p/9007939.html

  3. Wannafly Camp 2020 Day 1H 最大公约数 - 质因数分解,高精度

    把每个质因子扒出来乱搞一下 #include <bits/stdc++.h> using namespace std; int g[505][505]; int isp[505]; str ...

  4. JVM学习-环境构建

    想学习JVM,java虚拟机的底层原理.下面介绍下怎么将Java文件compiler成字节码,然后反编译为二进制查看分析. 一.JavaClass.java文件: package com.gqz.ja ...

  5. easy_thinking

    登陆抓包,改成32位,根据tp6任意创建文件的漏洞,修改cookie. 上传文件. 木马在/runtime/session下, 然后传bypass文件绕过disablefunction,得到flag

  6. JS高级---递归案例

    递归案例     递归案例: 求一个数字各个位数上的数字的和:  123   --->6 ---1+2+3 //递归案例:求一个数字各个位数上的数字的和: 123 --->6 ---1+2 ...

  7. linux添加新的环境变量

    Linux下设置PYTHONPATH环境变量有三种方法:一种作用于当前终端,一种作用于当前用户,一种作用于所有用户. 1.作用于当前终端,直接当前终端输入命令 $ export PYTHONPATH= ...

  8. AI赋能抗疫!顶象入选“中关村第二批抗疫新技术新产品新服务清单”

    新型冠状病毒疫情仍未到达拐点,要打赢这场疫情攻坚战,不仅需要全国人民共同努力,还要使用科技的手段,用科学来守护大家的安全.对病毒的识别需要运用生物学技术进行基因测序,病患需要依靠医学能力进行救治.与此 ...

  9. OpenShift 4.3环境中创建基于Go的Operator

    详细步骤可以参考官方文档 https://docs.openshift.com/container-platform/4.3/operators/operator_sdk/osdk-getting-s ...

  10. c#中转义字符\n和\r的区别

    在c#中\n代表换行,\r代表回车,但\r是把后面的字符覆盖前面的,例: "1234\n567" 输出的是 1234 567 "1234\r567"输出的是 5 ...