Recently, TeaTree acquire new knoledge gcd (Greatest Common Divisor), now she want to test you.
As we know, TeaTree is a tree and her root is node 1, she have n nodes and n-1 edge, for each node i, it has it’s value v[i].

For every two nodes i and j (i is not equal to j), they will tell
their Lowest Common Ancestors (LCA) a number : gcd(v[i],v[j]).

For each node, you have to calculate the max number that it heard. some definition:

In graph theory and computer science, the lowest common ancestor
(LCA) of two nodes u and v in a tree is the lowest (deepest) node that
has both u and v as descendants, where we define each node to be a
descendant of itself.
InputOn the first line, there is a positive integer n, which describe the number of nodes.

Next line there are n-1 positive integers f[2] ,f[3], …, f[n], f[i] describe the father of node i on tree.

Next line there are n positive integers v[2] ,v[3], …, v[n], v[i] describe the value of node i.

n<=100000, f[i]<i, v[i]<=100000OutputYour output should include n lines, for i-th line, output the max number that node i heard.

For the nodes who heard nothing, output -1.Sample Input

4
1 1 3
4 1 6 9

Sample Output

2
-1
3
-1
 
题意 : 给你一颗树,每个结点上面都有一个权值,询问你一任意一个结点作为树根其子树上任意两点的 gcd 的最大值是多少
思路分析 :
  1 . 用 vector 去模拟归并排序,当合并时遇到相同的就记录一下最大值
#define ll long long
const int maxn = 1e5+5; int n;
vector<int>d[maxn], ve[maxn], f[maxn];
void init(){
for(int i = 1; i <= 100000; i++){
for(int j = i; j <= 100000; j += i){
d[j].push_back(i);
}
}
}
int val[maxn], ans[maxn];
vector<int>temp; void merge(int x, int y){
temp.clear();
if (f[x].size() == 0) f[x] = d[val[x]];
if (f[y].size() == 0) f[y] = d[val[y]]; int i = 0, j = 0;
while((i < f[x].size()) && (j < f[y].size())){
if (f[x][i] < f[y][j]) temp.push_back(f[x][i]), i++;
else if (f[x][i] > f[y][j]) temp.push_back(f[y][j]), j++;
else {
temp.push_back(f[x][i]);
ans[x] = max(ans[x], f[x][i]); i++, j++;
}
}
while (i < f[x].size()) {
temp.push_back(f[x][i]);
i++;
}
while(j < f[y].size()) {
temp.push_back(f[y][j]);
j++;
}
f[x].clear(); f[y].clear();
f[x] = temp;
} void dfs(int x){
for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
dfs(to);
merge(x, to);
}
} int main() {
init();
cin >> n; int x;
memset(ans, -1, sizeof(ans));
for(int i = 2; i <= n; i++){
scanf("%d", &x);
ve[x].push_back(i);
}
for(int i = 1; i <= n; i++){
scanf("%d", &val[i]);
}
dfs(1);
for(int i = 1; i <= n; i++) printf("%d\n", ans[i]);
return 0;
}

2 .

 
Count the number of cyclic permutations of length n with no continuous subsequence [i, i + 1 mod n].
Output the answer modulo 998244353.
InputThe first line of the input contains an integer T , denoting the number of test cases.

In each test case, there is a single integer n in one line, denoting the length of cyclic permutations.

1 ≤ T ≤ 20, 1 ≤ n ≤ 100000OutputFor each test case, output one line contains a single integer, denoting the answer modulo 998244353.Sample Input

3
4
5
6

Sample Output

1
8
36 题意 : 有一个循环全排列,求相邻的位置不存在 [i, i+1] 以及 [n, 1] 的排列的方案数有多少个?
思路分析 :
    好菜啊..学的假的组合数学吧....
 

首先先说明什么是循环排列:

即把1-n这n个数随意地放到一个圆圈上,循环排列的不同仅仅取决于这n个数的相对位置的不同。

例如1234,2341,3412,4123这些数为相同的循环排列数。

循环排列没有首末之分,这四个元素随便从哪一个元素开始,绕一个方向转过去,都不改变它们的相对顺序;直线排列则首末分明,原来排末位,调换排首位,已改变它们的相对顺序。循环排列与直线排列的主要区别就在这一点上。

从例子看出,直线排列的个数是循环排列个数的n倍

由直线排列个数为n!可推知循环排列个数为(n-1)!。

讲完了循环排列,再来看此题是求不含子串[i,i+1]或[n,1](以下简称顺序子串,共有n个)的循环排列个数

因为一个排列中可能含有多个顺序子串,所以我们列举至少含有0个,1个,...n个的情况  (注意是至少,因为无法保证恰好含有i个)

包含至少一个顺序子串的循环排列数为C(n,1)*(n-2)!

包含至少两个顺序子串的循环排列数为C(n,2)*(n-3)!

...

包含至少k个顺序子串的循环排列数为C(n,k)*(n-k-1)!

(为什么是(n-k-1)! 当你选出了k个子串之后,至少有k+1个数相对位置已被确定,我们让剩下的(n-k-1)个数全排列即可。)

同时注意到包含n个顺序子串的循环排列数一定是1个。

事件之间相互包含,所以用到容斥原理:

∑(k从0到n-1)(-1)^k*C(n,k)*(n-k-1)!+(-1)^n*1

2018 Multi-University Training Contest 10的更多相关文章

  1. 2018 Nowcoder Multi-University Training Contest 10

    Practice Link J. Rikka with Nickname 题意: 给出\(n\)个字符串,要求依次合并两个串\(s, t\),满足将\(t\)合并到\(s\)中变成\(r\),使得\( ...

  2. 2016 Multi-University Training Contest 10

    solved 7/11 2016 Multi-University Training Contest 10 题解链接 分类讨论 1001 Median(BH) 题意: 有长度为n排好序的序列,给两段子 ...

  3. hdu 5416 CRB and Tree(2015 Multi-University Training Contest 10)

    CRB and Tree                                                             Time Limit: 8000/4000 MS (J ...

  4. 2015 Multi-University Training Contest 10 hdu 5406 CRB and Apple

    CRB and Apple Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  5. 2015 Multi-University Training Contest 10 hdu 5412 CRB and Queries

    CRB and Queries Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  6. [二分,multiset] 2019 Multi-University Training Contest 10 Welcome Party

    Welcome Party Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)T ...

  7. 2015 Multi-University Training Contest 10(9/11)

    2015 Multi-University Training Contest 10 5406 CRB and Apple 1.排序之后费用流 spfa用stack才能过 //#pragma GCC o ...

  8. 2018 Multi-University Training Contest 10 Solution

    A - Problem A.Alkane 留坑. B - Problem B. Beads 留坑. C - Problem C. Calculate 留坑. D - Problem D. Permut ...

  9. HDU - 6430 Problem E. TeaTree 2018 Multi-University Training Contest 10 (LCA+枚举因子)

    题意:一棵树,每个点都有自己val(1 <= val <= 1e5),而任意两个点u,v可以对lca(u,v) 产生gcd(valu,valv)的贡献,求每个点能接受到来自子树贡献的最大值 ...

  10. HDU - 6435 Problem J. CSGO 2018 Multi-University Training Contest 10 (二进制枚举+思维)

    题意:有N个主武器(MW)和M个副武器(SW),每个武器都有自己的S值,和K个附加属性xi.要选取一对主副武器搭配,搭配后获得的性能由该公式得出: 求获得最大的性能为多少. 分析:由于|xm - xs ...

随机推荐

  1. Spring与C3p0连接数据库对事务操作

    maven包: <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncodin ...

  2. jekyll 添加 Valine 评论

    本文告诉大家如何在自己搭建的静态博客添加 Valine 评论.在这前,我基本都是使用 多说,但是多说gg啦,所以就在找一个可以替换的评论 本来 Disqus是很好的,但是在国内很难打开,所以我就需要一 ...

  3. 【codeforces 764B】Timofey and cubes

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  4. 2018-2-13-win10-uwp-InkCanvas控件数据绑定

    title author date CreateTime categories win10 uwp InkCanvas控件数据绑定 lindexi 2018-2-13 17:23:3 +0800 20 ...

  5. java 面试题之交通灯管理系统

    需求: 交通灯管理系统的项目需求 Ø 异步随机生成按照各个路线行驶的车辆. 例如: 由南向而来去往北向的车辆 ---- 直行车辆 由西向而来去往南向的车辆 ---- 右转车辆 由东向而来去往南向的车辆 ...

  6. H3C 子网划分方法

  7. 看到两道小学数学题,实在是解不动,用js写了一下

    把一个自然数的约数(除去它本身)按照从小到大的顺序写在它的左边,可以得到一个多位数,比如6的约数是1,2,3,写成一个多位数是1236,假如这个多位数中,没有直复数字,那么我们你这个多位数是唯一的.请 ...

  8. CodeForces Goodbye 2017

    传送门 A - New Year and Counting Cards •题意 有n张牌,正面有字母,反面有数字 其中元音字母$a,e,o,i,u$的另一面必须对应$0,2,4,6,8$的偶数 其他字 ...

  9. C#面试题整理(带答案)

    1.维护数据库的完整性.一致性.你喜欢用触发器还是自写业务逻辑?为什么? 答:尽可能用约束(包括CHECK.主键.唯一键.外键.非空字段)实现,这种方式的效率最好:其次用触发器,这种方式可以保证无论何 ...

  10. Team Foundation Server 2015使用教程【5】:默认团队checkin权限修改