2018 Multi-University Training Contest 10
As we know, TeaTree is a tree and her root is node 1, she have n nodes and n-1 edge, for each node i, it has it’s value v[i].
For every two nodes i and j (i is not equal to j), they will tell
their Lowest Common Ancestors (LCA) a number : gcd(v[i],v[j]).
For each node, you have to calculate the max number that it heard. some definition:
In graph theory and computer science, the lowest common ancestor
(LCA) of two nodes u and v in a tree is the lowest (deepest) node that
has both u and v as descendants, where we define each node to be a
descendant of itself.
Next line there are n-1 positive integers f[2] ,f[3], …, f[n], f[i] describe the father of node i on tree.
Next line there are n positive integers v[2] ,v[3], …, v[n], v[i] describe the value of node i.
n<=100000, f[i]<i, v[i]<=100000OutputYour output should include n lines, for i-th line, output the max number that node i heard.
For the nodes who heard nothing, output -1.Sample Input
4
1 1 3
4 1 6 9
Sample Output
2
-1
3
-1
#define ll long long
const int maxn = 1e5+5; int n;
vector<int>d[maxn], ve[maxn], f[maxn];
void init(){
for(int i = 1; i <= 100000; i++){
for(int j = i; j <= 100000; j += i){
d[j].push_back(i);
}
}
}
int val[maxn], ans[maxn];
vector<int>temp; void merge(int x, int y){
temp.clear();
if (f[x].size() == 0) f[x] = d[val[x]];
if (f[y].size() == 0) f[y] = d[val[y]]; int i = 0, j = 0;
while((i < f[x].size()) && (j < f[y].size())){
if (f[x][i] < f[y][j]) temp.push_back(f[x][i]), i++;
else if (f[x][i] > f[y][j]) temp.push_back(f[y][j]), j++;
else {
temp.push_back(f[x][i]);
ans[x] = max(ans[x], f[x][i]); i++, j++;
}
}
while (i < f[x].size()) {
temp.push_back(f[x][i]);
i++;
}
while(j < f[y].size()) {
temp.push_back(f[y][j]);
j++;
}
f[x].clear(); f[y].clear();
f[x] = temp;
} void dfs(int x){
for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
dfs(to);
merge(x, to);
}
} int main() {
init();
cin >> n; int x;
memset(ans, -1, sizeof(ans));
for(int i = 2; i <= n; i++){
scanf("%d", &x);
ve[x].push_back(i);
}
for(int i = 1; i <= n; i++){
scanf("%d", &val[i]);
}
dfs(1);
for(int i = 1; i <= n; i++) printf("%d\n", ans[i]);
return 0;
}
2 .
Output the answer modulo 998244353.
In each test case, there is a single integer n in one line, denoting the length of cyclic permutations.
1 ≤ T ≤ 20, 1 ≤ n ≤ 100000OutputFor each test case, output one line contains a single integer, denoting the answer modulo 998244353.Sample Input
3
4
5
6
Sample Output
1
8
36 题意 : 有一个循环全排列,求相邻的位置不存在 [i, i+1] 以及 [n, 1] 的排列的方案数有多少个?
思路分析 :
好菜啊..学的假的组合数学吧....
首先先说明什么是循环排列:
即把1-n这n个数随意地放到一个圆圈上,循环排列的不同仅仅取决于这n个数的相对位置的不同。
例如1234,2341,3412,4123这些数为相同的循环排列数。
循环排列没有首末之分,这四个元素随便从哪一个元素开始,绕一个方向转过去,都不改变它们的相对顺序;直线排列则首末分明,原来排末位,调换排首位,已改变它们的相对顺序。循环排列与直线排列的主要区别就在这一点上。
从例子看出,直线排列的个数是循环排列个数的n倍
由直线排列个数为n!可推知循环排列个数为(n-1)!。
讲完了循环排列,再来看此题是求不含子串[i,i+1]或[n,1](以下简称顺序子串,共有n个)的循环排列个数
因为一个排列中可能含有多个顺序子串,所以我们列举至少含有0个,1个,...n个的情况 (注意是至少,因为无法保证恰好含有i个)
包含至少一个顺序子串的循环排列数为C(n,1)*(n-2)!
包含至少两个顺序子串的循环排列数为C(n,2)*(n-3)!
...
包含至少k个顺序子串的循环排列数为C(n,k)*(n-k-1)!
(为什么是(n-k-1)! 当你选出了k个子串之后,至少有k+1个数相对位置已被确定,我们让剩下的(n-k-1)个数全排列即可。)
同时注意到包含n个顺序子串的循环排列数一定是1个。
事件之间相互包含,所以用到容斥原理:
∑(k从0到n-1)(-1)^k*C(n,k)*(n-k-1)!+(-1)^n*1
2018 Multi-University Training Contest 10的更多相关文章
- 2018 Nowcoder Multi-University Training Contest 10
Practice Link J. Rikka with Nickname 题意: 给出\(n\)个字符串,要求依次合并两个串\(s, t\),满足将\(t\)合并到\(s\)中变成\(r\),使得\( ...
- 2016 Multi-University Training Contest 10
solved 7/11 2016 Multi-University Training Contest 10 题解链接 分类讨论 1001 Median(BH) 题意: 有长度为n排好序的序列,给两段子 ...
- hdu 5416 CRB and Tree(2015 Multi-University Training Contest 10)
CRB and Tree Time Limit: 8000/4000 MS (J ...
- 2015 Multi-University Training Contest 10 hdu 5406 CRB and Apple
CRB and Apple Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- 2015 Multi-University Training Contest 10 hdu 5412 CRB and Queries
CRB and Queries Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
- [二分,multiset] 2019 Multi-University Training Contest 10 Welcome Party
Welcome Party Time Limit: 4000/4000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)T ...
- 2015 Multi-University Training Contest 10(9/11)
2015 Multi-University Training Contest 10 5406 CRB and Apple 1.排序之后费用流 spfa用stack才能过 //#pragma GCC o ...
- 2018 Multi-University Training Contest 10 Solution
A - Problem A.Alkane 留坑. B - Problem B. Beads 留坑. C - Problem C. Calculate 留坑. D - Problem D. Permut ...
- HDU - 6430 Problem E. TeaTree 2018 Multi-University Training Contest 10 (LCA+枚举因子)
题意:一棵树,每个点都有自己val(1 <= val <= 1e5),而任意两个点u,v可以对lca(u,v) 产生gcd(valu,valv)的贡献,求每个点能接受到来自子树贡献的最大值 ...
- HDU - 6435 Problem J. CSGO 2018 Multi-University Training Contest 10 (二进制枚举+思维)
题意:有N个主武器(MW)和M个副武器(SW),每个武器都有自己的S值,和K个附加属性xi.要选取一对主副武器搭配,搭配后获得的性能由该公式得出: 求获得最大的性能为多少. 分析:由于|xm - xs ...
随机推荐
- CentOS7 添加FTP用户并设置权限
step 1 安装配置Vsftp服务器 一.配置防火墙,开启FTP服务器需要的端口 CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewal ...
- H3C 配置路由器作为FTP客户端
- ZR并查集专题
ZR并查集专题 并查集,作为一个基础算法,对于初学者来说,下面的代码是维护连通性的利器 return fa[x] == x ? x : fa[x] = getf(fa[x]); 所以,但是这对并查集的 ...
- Linux 内核sysfs 文件系统符号连接
sysfs 文件系统有通常的树结构, 反映它代表的 kobjects 的层次组织. 但是内核中对象 间的关系常常比那个更加复杂. 例如, 一个 sysfs 子树 (/sys/devices )代表所有 ...
- 用mingw静态编译Qt4.8.2和Qt5.1.1(需要修改不少源码)
因为一些乱七八糟的原因,我需要用mingw静态编译Qt4.8.2和Qt5.1.1.经历了一天的折腾之后,自觉编译一下Qt还是件颇为麻烦的事情,故将过程略作总结,以备不时之需. 首先,在编译之前,我需要 ...
- Django框架之中间件MiddleWare
Django中的中间件是一个轻量级.底层的插件系统,可以介入Django的请求和响应处理过程,修改Django的输入或输出.中间件的设计为开发者提供了一种无侵入式的开发方式,增强了Django框架的健 ...
- TCP&IP基础概念复习
第一章概述 NII(National Information Infrastructure):国家信息基础设施 GII(Global Information Infrastructure):全球信息基 ...
- 0013 CSS复合选择器:后代、子代、交集、并集、超链接伪类
重点: 复合选择器 后代选择器 并集选择器 标签显示模式 CSS背景 背景位置 CSS三大特性 优先级 1. CSS复合选择器 目标 理解 理解css复合选择器分别的应用场景 应用 使用后代选择器给元 ...
- 0006 列表(ul、ol、dl)
1. 列表标签(重点) 学习目标 理解 无序列表的应用场景 自定义列表的应用场景 应用 无序列表语法 自定义列表语法 问? 前面我们知道表格一般用于数据展示的,但是网页中还是有很多跟表格类似的布局,如 ...
- JSON 文件的存取
import json data = {'Tom': {'Weight:': 65, 'Score': 90, 'Height': 170}} # json.dumps 将字典转化为 JSON 编码的 ...