Hackerrank--Emma and sum of products (FFT)
Emma is really fond of integers and loves playing with them. Her friends were jealous, and to test her, one of them gave her a problem.
Emma is given a list A of N integers and is asked a set of Q queries. Each query is denoted by an integer K, for which you have to return the sum of product of all possible sublists having exactly K elements.
Emma has got stuck in this problem and you being her best friend have decided to help her write a code to solve it. Since the answers can be very large, print the answers modulo100003.Input Format
First line has an integer N, denoting the number of integers in list A. Next line contains N space separated integers. The third line contains integer Q, and next Q lines have a single integer K.Output Format
For each of the queries, print the corresponding answer in a new line.NOTE Sublist here refers to selecting K elements from a list of N elements. There will be (NK) ways to do that, it doesn't matter if two elements are same.
Constraints
1≤N≤3×104
1≤Ai≤105
1≤Q≤N
1≤K≤NSample Input #00
3
1 2 3
2
1
2
Sample Output #00
6
11
Sample Input #01
3
1 2 2
1
2
Sample Output #01
8
Explanation
Sample #00:
For K=1 possible sublists are {1},{2},{3} so answer is 1+2+3=6.
For K=2 possible sublists are {1,2},{2,3},{3,1} so answer is (1×2)+(2×3)+(3×1)=2+6+3=11.Sample #01:
For K=2 possible sublists are {1,2},{2,2},{2,1} so answer is (1×2)+(2×2)+(2×1)=2+4+2=8.
题意:给出n个数,有q次询问,每次询问一个k,从n个数中选出k个数,对这k个数做乘积,求所有可能的选法的和。
我们把每个数看做一个多项式:x + A[i], 那么就可以得到n个这样的多项式。 将这n个多项式相乘,
那么k对应的查询的答案就是多项式中x^k项的系数,和母函数有点类似。
下面就是如何计算n个多项式的乘积,想到用FFT,但是不可以直接线性的计算这n个多项式的乘积,时间复杂度
太高,所以想到分治的思想,总的复杂度就是O(n*(log(n)^2))
Accepted Code:
#define _CRT_SECURE_NO_WARNINGS
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <bitset>
#include <complex>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii;
typedef long long ll; typedef vector<long long> vl; typedef pair<long long,long long> pll; typedef vector<pair<long long,long long> > vpll;
typedef vector<string> vs; typedef long double ld;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } typedef long double Num; //??????long double?????
const Num PI = .141592653589793238462643383279L;
typedef complex<Num> Complex;
//n?????
//a?????
void fft_main(int n, Num theta, Complex a[]) {
for(int m = n; m >= ; m >>= ) {
int mh = m >> ;
Complex thetaI = Complex(, theta);
rep(i, mh) {
Complex w = exp((Num)i*thetaI);
for(int j = i; j < n; j += m) {
int k = j + mh;
Complex x = a[j] - a[k];
a[j] += a[k];
a[k] = w * x;
}
}
theta *= ;
}
int i = ;
reu(j, , n-) {
for(int k = n >> ; k > (i ^= k); k >>= ) ;
if(j < i) swap(a[i], a[j]);
}
} void fft(int n, Complex a[]) { fft_main(n, * PI / n, a); }
void inverse_fft(int n, Complex a[]) { fft_main(n, - * PI / n, a); } void convolution(vector<Complex> &v, vector<Complex> &w) {
int n = , vwn = v.size() + w.size() - ;
while(n < vwn) n <<= ;
v.resize(n), w.resize(n);
fft(n, &v[]);
fft(n, &w[]);
rep(i, n) v[i] *= w[i];
inverse_fft(n, &v[]);
rep(i, n) v[i] /= n;
} const int MOD = ; vector<int> calc_dfs(const vector<int> &A, int l, int r) {
if(r - l == ) {
vector<int> res();
res[] = ;
res[] = A[l];
return res;
}
int mid = (l + r) / ;
vector<int> L = calc_dfs(A, l, mid), R = calc_dfs(A, mid, r);
vector<Complex> Lc(all(L)), Rc(all(R));
convolution(Lc, Rc);
int n = L.size() + R.size() - ;
vector<int> res(n);
rep(i, n) res[i] = (long long)(Lc[i].real() + .) % MOD;
// cerr << "["<< l << "," << r <<"): ";
// rep(i, n) cerr << res[i] << ", "; cerr << endl;
return res;
} int main() {
int N;
scanf("%d", &N);
vector<int> A(N);
rep(i, N) {
scanf("%d", &A[i]);
A[i] %= MOD;
}
vector<int> ans = calc_dfs(A, , N);
int Q;
scanf("%d", &Q);
rep(ii, Q) {
int K;
scanf("%d", &K);
printf("%d\n", ans[K]);
}
return ;
}
Hackerrank--Emma and sum of products (FFT)的更多相关文章
- [CF1519D] Maximum Sum of Products (暴力)
题面 有两个长为 n n n 的序列 a a a 和 b b b,至多反转 a a a 的一个子区间,最大化 ∑ i = 1 n a i ⋅ b i \sum_{i=1}^na_i\cdot b_i ...
- 1305 Pairwise Sum and Divide(数学 ,规律)
HackerRank 1305 Pairwise Sum and Divide 有这样一段程序,fun会对整数数组A进行求值,其中Floor表示向下取整: fun(A) sum = ...
- bzoj 3513 [MUTC2013]idiots FFT 生成函数
[MUTC2013]idiots Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 806 Solved: 265[Submit][Status][Di ...
- HDU - 5307 :He is Flying (分治+FFT)(非正解)
JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has ...
- Fast Fourier Transform
写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...
- SQL Server(三):Select语句
1.最基本的Select语句: Select [Top n [With Ties]] <*|Column_Name [As <Alias>][, ...n]> From & ...
- cf #365b 巧妙的统计
Mishka and trip time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- 用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪
前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个 ...
- codeforces 86D : Powerful array
Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...
随机推荐
- 4.RDD常用算子之transformations
RDD Opertions transformations:create a new dataset from an existing one RDDA --> RDDB ...
- crontab[计划任务],tar[压缩],grep[查找]
计划任务:1.新建一个计划任务:crontab -e -----> 3*/1 * * * * date >> /tmp/data.txt查看计划任务:crontab -l.如果超过6 ...
- 字符串+dp——cf1163D好题
很好的题(又复习了一波kmp) /* dp[i,j,k]:到s1的第i位,匹配s2到j,s3到k的最优解 */ #include<bits/stdc++.h> using namespac ...
- SQLServer中使用索引视图
在SQL Server中,视图是一个保存的T-SQL查询.视图定义由SQL Server保存,以便它能够用作一个虚拟表来简化查询,并给基表增加另一层安全.但是,它并不占用数据库的任何空间.实际上,在你 ...
- DotNetBar2设置窗体为office风格
帮同事写个桌面工具,刚学着用DotNetBar2.后面面分享学习过程.下面是给窗体设置成office风格的方法.(1)拷贝DotNetBar2的dll文件,添加引用. (2)在需要用office风格的 ...
- Installer - win10安装及卸载SQL Server2008数据库
一.数据库安装环境 操作系统:win10 SQL server:SQL server 2008 R2 二.全新数据库安装 1.安装扩展文件 双击安装文件,弹出如下窗体: ...
- 通过实体类生成建表SQL语句实现方法
import java.io.File; import java.io.FileOutputStream; import java.lang.reflect.Field; import java.ut ...
- logcat日志文件
android日志系统提供了记录和查看系统调试信息的功能,日志都是从各个软件和一些系统的缓冲区中记录下来的,缓冲区可以通过logcat命令来进行查看和使用 开发者选项,有个选项叫做“日志记录器缓冲区大 ...
- APPScan手动探索
- ListCtrl使用指南
http://blog.csdn.net/bqw2008/article/details/2047489 Windows ListCtrl使用技巧1. ListCtrl 风格 LVS_IC ...