Hackerrank--Emma and sum of products (FFT)
Emma is really fond of integers and loves playing with them. Her friends were jealous, and to test her, one of them gave her a problem.
Emma is given a list A of N integers and is asked a set of Q queries. Each query is denoted by an integer K, for which you have to return the sum of product of all possible sublists having exactly K elements.
Emma has got stuck in this problem and you being her best friend have decided to help her write a code to solve it. Since the answers can be very large, print the answers modulo100003.Input Format
First line has an integer N, denoting the number of integers in list A. Next line contains N space separated integers. The third line contains integer Q, and next Q lines have a single integer K.Output Format
For each of the queries, print the corresponding answer in a new line.NOTE Sublist here refers to selecting K elements from a list of N elements. There will be (NK) ways to do that, it doesn't matter if two elements are same.
Constraints
1≤N≤3×104
1≤Ai≤105
1≤Q≤N
1≤K≤NSample Input #00
3
1 2 3
2
1
2
Sample Output #00
6
11
Sample Input #01
3
1 2 2
1
2
Sample Output #01
8
Explanation
Sample #00:
For K=1 possible sublists are {1},{2},{3} so answer is 1+2+3=6.
For K=2 possible sublists are {1,2},{2,3},{3,1} so answer is (1×2)+(2×3)+(3×1)=2+6+3=11.Sample #01:
For K=2 possible sublists are {1,2},{2,2},{2,1} so answer is (1×2)+(2×2)+(2×1)=2+4+2=8.
题意:给出n个数,有q次询问,每次询问一个k,从n个数中选出k个数,对这k个数做乘积,求所有可能的选法的和。
我们把每个数看做一个多项式:x + A[i], 那么就可以得到n个这样的多项式。 将这n个多项式相乘,
那么k对应的查询的答案就是多项式中x^k项的系数,和母函数有点类似。
下面就是如何计算n个多项式的乘积,想到用FFT,但是不可以直接线性的计算这n个多项式的乘积,时间复杂度
太高,所以想到分治的思想,总的复杂度就是O(n*(log(n)^2))
Accepted Code:
#define _CRT_SECURE_NO_WARNINGS
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <bitset>
#include <complex>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii;
typedef long long ll; typedef vector<long long> vl; typedef pair<long long,long long> pll; typedef vector<pair<long long,long long> > vpll;
typedef vector<string> vs; typedef long double ld;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } typedef long double Num; //??????long double?????
const Num PI = .141592653589793238462643383279L;
typedef complex<Num> Complex;
//n?????
//a?????
void fft_main(int n, Num theta, Complex a[]) {
for(int m = n; m >= ; m >>= ) {
int mh = m >> ;
Complex thetaI = Complex(, theta);
rep(i, mh) {
Complex w = exp((Num)i*thetaI);
for(int j = i; j < n; j += m) {
int k = j + mh;
Complex x = a[j] - a[k];
a[j] += a[k];
a[k] = w * x;
}
}
theta *= ;
}
int i = ;
reu(j, , n-) {
for(int k = n >> ; k > (i ^= k); k >>= ) ;
if(j < i) swap(a[i], a[j]);
}
} void fft(int n, Complex a[]) { fft_main(n, * PI / n, a); }
void inverse_fft(int n, Complex a[]) { fft_main(n, - * PI / n, a); } void convolution(vector<Complex> &v, vector<Complex> &w) {
int n = , vwn = v.size() + w.size() - ;
while(n < vwn) n <<= ;
v.resize(n), w.resize(n);
fft(n, &v[]);
fft(n, &w[]);
rep(i, n) v[i] *= w[i];
inverse_fft(n, &v[]);
rep(i, n) v[i] /= n;
} const int MOD = ; vector<int> calc_dfs(const vector<int> &A, int l, int r) {
if(r - l == ) {
vector<int> res();
res[] = ;
res[] = A[l];
return res;
}
int mid = (l + r) / ;
vector<int> L = calc_dfs(A, l, mid), R = calc_dfs(A, mid, r);
vector<Complex> Lc(all(L)), Rc(all(R));
convolution(Lc, Rc);
int n = L.size() + R.size() - ;
vector<int> res(n);
rep(i, n) res[i] = (long long)(Lc[i].real() + .) % MOD;
// cerr << "["<< l << "," << r <<"): ";
// rep(i, n) cerr << res[i] << ", "; cerr << endl;
return res;
} int main() {
int N;
scanf("%d", &N);
vector<int> A(N);
rep(i, N) {
scanf("%d", &A[i]);
A[i] %= MOD;
}
vector<int> ans = calc_dfs(A, , N);
int Q;
scanf("%d", &Q);
rep(ii, Q) {
int K;
scanf("%d", &K);
printf("%d\n", ans[K]);
}
return ;
}
Hackerrank--Emma and sum of products (FFT)的更多相关文章
- [CF1519D] Maximum Sum of Products (暴力)
题面 有两个长为 n n n 的序列 a a a 和 b b b,至多反转 a a a 的一个子区间,最大化 ∑ i = 1 n a i ⋅ b i \sum_{i=1}^na_i\cdot b_i ...
- 1305 Pairwise Sum and Divide(数学 ,规律)
HackerRank 1305 Pairwise Sum and Divide 有这样一段程序,fun会对整数数组A进行求值,其中Floor表示向下取整: fun(A) sum = ...
- bzoj 3513 [MUTC2013]idiots FFT 生成函数
[MUTC2013]idiots Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 806 Solved: 265[Submit][Status][Di ...
- HDU - 5307 :He is Flying (分治+FFT)(非正解)
JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has ...
- Fast Fourier Transform
写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...
- SQL Server(三):Select语句
1.最基本的Select语句: Select [Top n [With Ties]] <*|Column_Name [As <Alias>][, ...n]> From & ...
- cf #365b 巧妙的统计
Mishka and trip time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- 用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪
前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个 ...
- codeforces 86D : Powerful array
Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...
随机推荐
- react中使用屏保
1,默认路由路径为屏保组件 <HashRouter history={hashHistory}> <Switch> <Route exact path="/&q ...
- 看 《android权威编程指南》 的笔记
Android 编译工具 确保ant已安装并正常运行,android sdk的tools/和platform-tools目录包含在可执行文件的搜索路径中 切换到项目目录并执行以下命令: android ...
- Sightseeing Cows
Sightseeing Cows 给出一张图,点数为L,边数P,并给出边的边权\(\{b_i\}\),再给处每个点的点权,求一条起点和终点相同的路径,并使其点权之和除以边权之和最大,注意,路径中点权只 ...
- [JZOJ3167] 【GDOI2013模拟3】查税
题目 描述 题目大意 维护一个有一次函数组成的序列 具体来说,对于位置xxx,现在的值为sx+zx∗(T−tx)s_x+z_x*(T-t_x)sx+zx∗(T−tx) 有两个操作,修改某个位置上 ...
- string、char* 、int数据类型相互转换
string类型转换成char*类型,这里一般有以下三种方法: 1.c_str()方法 string name="Qian"; char *str=(char*)name.c_st ...
- React项目开发经验汇总
博客来源 小寒的博客 定义好全局配置信息 环境变量不要提取出来,配置信息提取出来 UI样式变量 定义好变量的作用不用多说 样式库建设 工具样式,复用性强的样式,这些class成为会是真个网站样式的 ...
- LINQ学习系列-----3.1 查询非泛型集合和多个分组
一.查询非泛型集合 1.问题起源 LINQ to object在设计时,是配合IEnumerable<T>接口的泛型集合类型使用的,例如字典.数组.List<T>等,但是对于继 ...
- 05-python 学习第五天-简单验证码
通过python 随机数可以制作简单的验证码. 1.0版本来了,这验证码,只有一个码,功能虽然达不到,逻辑还是准确的,目前还不能算是验证码,但是我们会继续完善的. import random # 导入 ...
- C#跨域
//在ConfigureServices中配置 #region 跨域 var urls = "*";//Configuration["AppConfig:Cores&qu ...
- 2019-8-31-dotnet-启动-JIT-多核心编译提升启动性能
title author date CreateTime categories dotnet 启动 JIT 多核心编译提升启动性能 lindexi 2019-08-31 16:55:58 +0800 ...