《算法导论》——矩阵乘法的Strassen算法
前言:
很多朋友看到我写的《算法导论》系列,可能会觉得云里雾里,不知所云。这里我再次说明,本系列博文时配合《算法导论》一书,给出该书涉及的算法的c++实现。请结合《算法导论》一书阅读该系列博文。我这里有该书的电子版,有需要的朋友可以留言。
正题:
今天讨论的算法是矩阵乘法的Strassen算法,该算法的精髓在于减少n/2矩阵*n/2矩阵的次数。首先,作一些写该算法的基础工作:
/*
* 矩阵的加法运算
*/
void Add(int** matrixA, int** matrixB, int** matrixResult,int length)
{
for(int i = ; i < length; i++) {
for(int j = ; j < length; j++) {
matrixResult[i][j] = matrixA[i][j] + matrixB[i][j];
}
}
} /*
* 矩阵的减法运算
*/
void Sub(int** matrixA, int** matrixB, int** matrixResult,int length)
{
for(int i = ; i < length; i++) {
for(int j = ; j < length; j++) {
matrixResult[i][j] = matrixA[i][j] - matrixB[i][j];
}
}
} /*
* 矩阵乘法
*/
void Mul(int** matrixA, int** matrixB, int** matrixResult){
for(int i = ; i < ; ++i) {
for(int j = ; j < ; ++j) {
matrixResult[i][j] = ;
for(int k = ; k < ; ++k) {
matrixResult[i][j] += matrixA[i][k] * matrixB[k][j];
}
}
}
}
接着进入核心部分:
void Strassen(int** matrixA, int** matrixB, int** matrixResult,int length)
{
int halfLength=length/;
int** a11=new int*[halfLength];
int** a12=new int*[halfLength];
int** a21=new int*[halfLength];
int** a22=new int*[halfLength]; int** b11=new int*[halfLength];
int** b12=new int*[halfLength];
int** b21=new int*[halfLength];
int** b22=new int*[halfLength]; int** s1=new int*[halfLength];
int** s2=new int*[halfLength];
int** s3=new int*[halfLength];
int** s4=new int*[halfLength];
int** s5=new int*[halfLength];
int** s6=new int*[halfLength];
int** s7=new int*[halfLength]; int** matrixResult11=new int*[halfLength];
int** matrixResult12=new int*[halfLength];
int** matrixResult21=new int*[halfLength];
int** matrixResult22=new int*[halfLength]; int** temp=new int*[halfLength];
int** temp1=new int*[halfLength];
if(halfLength==){
Mul(matrixA, matrixB, matrixResult);
}else{
//首先将矩阵A,B 分为4块
for(int i = ; i < halfLength; i++) {
a11[i]=new int[halfLength];
a12[i]=new int[halfLength];
a21[i]=new int[halfLength];
a22[i]=new int[halfLength]; b11[i]=new int[halfLength];
b12[i]=new int[halfLength];
b21[i]=new int[halfLength];
b22[i]=new int[halfLength]; s1[i]=new int[halfLength];
s2[i]=new int[halfLength];
s3[i]=new int[halfLength];
s4[i]=new int[halfLength];
s5[i]=new int[halfLength];
s6[i]=new int[halfLength];
s7[i]=new int[halfLength]; matrixResult11[i]=new int[halfLength];
matrixResult12[i]=new int[halfLength];
matrixResult21[i]=new int[halfLength];
matrixResult22[i]=new int[halfLength]; temp[i]=new int[halfLength];
temp1[i]=new int[halfLength];
for(int j = ; j < halfLength; j++) {
a11[i][j]=matrixA[i][j];
a12[i][j]=matrixA[i][j+halfLength];
a21[i][j]=matrixA[i+halfLength][j];
a22[i][j]=matrixA[i+halfLength][j+halfLength];
b11[i][j]=matrixB[i][j];
b12[i][j]=matrixB[i][j+halfLength];
b21[i][j]=matrixB[i+halfLength][j];
b22[i][j]=matrixB[i+halfLength][j+halfLength];
}
} //计算s1
Sub(b12, b22, temp,halfLength);
Strassen(a11, temp, s1,halfLength);
//计算s2
Add(a11, a12, temp,halfLength);
Strassen(temp, b22, s2,halfLength);
//计算s3
Add(a21, a22, temp,halfLength);
Strassen(temp, b11, s3,halfLength);
//计算s4
Sub(b21, b11, temp,halfLength);
Strassen(a22, temp, s4,halfLength);
//计算s5
Add(a11, a22, temp1,halfLength);
Add(b11, b22, temp,halfLength);
Strassen(temp1, temp, s5,halfLength);
//计算s6
Sub(a12, a22, temp1,halfLength);
Add(b21, b22, temp,halfLength);
Strassen(temp1, temp, s6,halfLength);
//计算s7
Sub(a11, a21, temp1,halfLength);
Add(b11, b12, temp,halfLength);
Strassen(temp1, temp, s7,halfLength); //计算matrixResult11
Add(s5, s4, temp1,halfLength);
Sub(temp1, s2, temp,halfLength);
Add(temp, s6, matrixResult11,halfLength);
//计算matrixResult12
Add(s1, s2, matrixResult12,halfLength);
//计算matrixResult21
Add(s3, s4, matrixResult21,halfLength);
//计算matrixResult22
Add(s5, s1, temp1,halfLength);
Sub(temp1, s3, temp,halfLength);
Sub(temp, s7, matrixResult22,halfLength); //结果送回matrixResult中
for(int i = ; i < halfLength; i++) {
for(int j = ; j < halfLength; j++) {
matrixResult[i][j]=matrixResult11[i][j];
matrixResult[i][j+halfLength]=matrixResult12[i][j];
matrixResult[i+halfLength][j]=matrixResult21[i][j];
matrixResult[i+halfLength][j+halfLength]=matrixResult22[i][j];
}
delete(a11[i]);
delete(a12[i]);
delete(a21[i]);
delete(a22[i]); delete(b11[i]);
delete(b12[i]);
delete(b21[i]);
delete(b22[i]); delete(s1[i]);
delete(s2[i]);
delete(s3[i]);
delete(s4[i]);
delete(s5[i]);
delete(s6[i]);
delete(s7[i]); delete(matrixResult11[i]);
delete(matrixResult12[i]);
delete(matrixResult21[i]);
delete(matrixResult22[i]); delete(temp[i]);
delete(temp1[i]);
}
delete(a11);
delete(a12);
delete(a21);
delete(a22); delete(b11);
delete(b12);
delete(b21);
delete(b22); delete(s1);
delete(s2);
delete(s3);
delete(s4);
delete(s5);
delete(s6);
delete(s7); delete(matrixResult11);
delete(matrixResult12);
delete(matrixResult21);
delete(matrixResult22); delete(temp);
delete(temp1);
}
}
该算法看着或许有些冗长,几乎一半都在进行动态指针的初始化和删除。利用该算法计算矩阵乘的时间复杂度为θ(n^lg7)。
测试一下吧:
#include "stdafx.h"
#include <iostream>
#include "SquareMatrix.h" using namespace std;
using namespace dksl; //STRASSEN矩阵乘法算法 const int N=; //常量N用来定义矩阵的大小
int _tmain(int argc, _TCHAR* argv[])
{
int **a=new int*[];
int **b=new int*[];
int **c=new int*[];
for(int i=;i<;i++)
{
a[i]=new int[];
b[i]=new int[];
c[i]=new int[];
for(int j=;j<;j++)
{
a[i][j]=;
b[i][j]=;
}
}
Strassen(a,b,c,);
for(int i=;i<;i++)
{
for(int j=;j<;j++)
cout<<c[i][j]<<" ";
cout<<endl;
}
system("PAUSE");
return ;
}

《算法导论》——矩阵乘法的Strassen算法的更多相关文章
- 4-2.矩阵乘法的Strassen算法详解
题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B ...
- 【算法导论C++代码】Strassen算法
简单方阵矩乘法 SQUARE-MATRIX-MULTIPLY(A,B) n = A.rows let C be a new n*n natrix to n to n cij = to n cij=ci ...
- 算法导论-矩阵乘法-strassen算法
目录 1.矩阵相乘的朴素算法 2.矩阵相乘的strassen算法 3.完整测试代码c++ 4.性能分析 5.参考资料 内容 1.矩阵相乘的朴素算法 T(n) = Θ(n3) 朴素矩阵相乘算法,思想明了 ...
- 第四章 分治策略 4.2 矩阵乘法的Strassen算法
package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import ...
- 【算法导论】--分治策略Strassen算法(运用下标运算)【c++】
由于偷懒不想用泛型,所以直接用了整型来写了一份 ①首先你得有一个矩阵的class Matrix ②Matrix为了方便用下标进行运算, Matrix的结构如图:(我知道我的字丑...) Matrix. ...
- 算法笔记_081:蓝桥杯练习 算法提高 矩阵乘法(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a[n],现要将它们依次相乘,只能使用结合率,求最 ...
- 蓝桥 ADV-232 算法提高 矩阵乘法 【区间DP】
算法提高 矩阵乘法 时间限制:3.0s 内存限制:256.0MB 问题描述 有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a[n],现要 ...
- Java实现 蓝桥杯 算法提高 矩阵乘法(暴力)
试题 算法提高 矩阵乘法 问题描述 小明最近刚刚学习了矩阵乘法,但是他计算的速度太慢,于是他希望你能帮他写一个矩阵乘法的运算器. 输入格式 输入的第一行包含三个正整数N,M,K,表示一个NM的矩阵乘以 ...
- Java实现 蓝桥杯 算法训练 矩阵乘法
算法训练 矩阵乘法 时间限制:1.0s 内存限制:512.0MB 提交此题 问题描述 输入两个矩阵,分别是ms,sn大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均 ...
随机推荐
- intelij idea设置成eclipse快捷键
1.导入jar包文件: https://pan.baidu.com/s/1QSd_CY5X_dUUw74evbckXg 密码: 23rq 2.idea -->settting ---> ...
- mybatis foreach 遍历list中的坑
将jdbc改写为mybatis时,传入的条件为list使用到的标签是<where> .<choose>.<when>.<if>.<foreach& ...
- Problem E: 类的初体验(V)
Description 定义一个类Data,只有一个int类型的属性和如下方法: 1. 缺省构造函数,将属性初始化为0,并输出"Data's default constructor.&q ...
- tf 随机数
tf生成随机数 import tensorflow as tf sess = tf.InteractiveSession() ### 生成符合正态分布的随机值 # tf.random_normal(s ...
- 阿里的maven镜像仓库,eclipse中使用maven下载jar包的时候提升速度
<mirrors> <mirror> <id>alimaven</id> <name>aliyun maven</name> & ...
- CC攻击原理及防范方法
一. CC攻击的原理: CC攻击的原理就是攻击者控制某些主机不停地发大量数据包给对方服务器造成服务器资源耗尽,一直到宕机崩溃.CC主要是用来消耗服务器资源的,每个人都有这样的体验:当一个网页访问的人数 ...
- Centos上SSH连接过慢原因
最近发现机房里有些centos机器进行ssh登陆非常慢且会超时,经过查看发现时GSPI认证过慢问题造成: 使用 ssh -v 发现 debug1: SSH2_MSG_SERVICE_ACCEPT re ...
- python入门第二天
啦啦啦啦啦!!!!我又来啦,几天该正式开始学习python语言啦,好高兴啊!!!今天学习的主要内容是变量和简单的数据类型!! 变量和简单的数据类型 大家回忆一下昨天的Hello Python Worl ...
- C# Restful 启用 Session
虽然很多人说不建议启用,但我就是想启用. [ServiceContract(SessionMode=SessionMode.Allowed)] public interface IBIService ...
- windows server 修改远程桌面连接端口号
1. [运行]输入 regedit 2. 在注册表编辑器中找到以下PortNamber键,改为要使用的远程端口,如10000. HKEY_LOCAL_MACHINE\SYSTEM\CurrentCo ...