【BZOJ2244】[SDOI2011]拦截导弹(CDQ分治)

题面

BZOJ

洛谷

题解

不难发现这就是一个三维偏序+\(LIS\)这样一个\(dp\)。

那么第一问很好求,直接\(CDQ\)分治之后\(dp\)就好了。

那么第二问呢?首先如果记一个方案数,显然就可以在转移的时候求出以每个点开头/结尾的\(LIS\)个数,这样子在算的时候前后乘一下再除掉全部的\(LIS\)数就是答案了。

说起来好简单啊,码起来就不一样了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 50500
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n;
struct Node{int h,v,i;}p[MAX];
int lb(int x){return x&(-x);}
int c[MAX];double w[MAX];
void add(int x,int v,double W)
{
while(x<=n)
{
if(v==c[x])w[x]+=W;
else if(v>c[x])c[x]=v,w[x]=W;
x+=lb(x);
}
}
int Query(int x){int ret=0;while(x)ret=max(ret,c[x]),x-=lb(x);return ret;}
double Query(int x,int v){double ret=0;while(x)ret+=(c[x]==v)?w[x]:0,x-=lb(x);return ret;}
int f[2][MAX];double g[2][MAX];
void clear(int x){while(x<=n)c[x]=w[x]=0,x+=lb(x);}
bool cmph(Node a,Node b){return a.h>b.h;}
bool cmpv(Node a,Node b){return a.v>b.v;}
bool cmpi(Node a,Node b){return a.i<b.i;}
void CDQ(int l,int r,int type)
{
if(l==r)return;
sort(&p[l],&p[r+1],cmpi);
if(type)reverse(&p[l],&p[r+1]);
int mid=(l+r)>>1;
CDQ(l,mid,type);
sort(&p[l],&p[mid+1],cmph);
sort(&p[mid+1],&p[r+1],cmph);
for(int i=mid+1,j=l;i<=r;++i)
{
while(j<=mid&&p[j].h>=p[i].h)
add(n+1-p[j].v,f[type][p[j].i],g[type][p[j].i]),++j;
int d=Query(n+1-p[i].v)+1;
if(d>f[type][p[i].i])f[type][p[i].i]=d,g[type][p[i].i]=Query(n+1-p[i].v,d-1);
else if(d==f[type][p[i].i])g[type][p[i].i]+=Query(n+1-p[i].v,d-1);
}
for(int i=l;i<=mid;++i)clear(n+1-p[i].v);
CDQ(mid+1,r,type);
}
int Sh[MAX],toth,Sv[MAX],totv;
int main()
{
n=read();
for(int i=1;i<=n;++i)p[i].h=read(),p[i].v=read(),p[i].i=i;
for(int i=1;i<=n;++i)Sh[++toth]=p[i].h;
sort(&Sh[1],&Sh[toth+1]);toth=unique(&Sh[1],&Sh[toth+1])-Sh-1;
for(int i=1;i<=n;++i)p[i].h=lower_bound(&Sh[1],&Sh[toth+1],p[i].h)-Sh;
for(int i=1;i<=n;++i)Sv[++totv]=p[i].v;
sort(&Sv[1],&Sv[totv+1]);totv=unique(&Sv[1],&Sv[totv+1])-Sv-1;
for(int i=1;i<=n;++i)p[i].v=lower_bound(&Sv[1],&Sv[totv+1],p[i].v)-Sv;
for(int i=1;i<=n;++i)f[0][i]=f[1][i]=g[0][i]=g[1][i]=1;
CDQ(1,n,0);
reverse(&p[1],&p[n+1]);
for(int i=1;i<=n;++i)p[i].v=n-p[i].v+1,p[i].h=n-p[i].h+1;
CDQ(1,n,1);
int ans=0;double sum=0;
for(int i=1;i<=n;++i)ans=max(ans,f[0][i]);
for(int i=1;i<=n;++i)if(f[0][i]==ans)sum+=g[0][i];
printf("%d\n",ans);
for(int i=1;i<=n;++i)
if(f[0][i]+f[1][i]-1!=ans)printf("0.000000 ");
else printf("%.6lf ",g[0][i]*g[1][i]/sum);
puts("");return 0;
}

【BZOJ2244】[SDOI2011]拦截导弹(CDQ分治)的更多相关文章

  1. [BZOJ2244][SDOI2011]拦截导弹 CDQ分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MB  Special Judge Description 某国为了防御敌国的导弹 ...

  2. BZOJ2244: [SDOI2011]拦截导弹(CDQ分治,二维LIS,计数)

    Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高 ...

  3. bzoj 2244: [SDOI2011]拦截导弹 cdq分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 237  Solved: ...

  4. BZOJ 2244: [SDOI2011]拦截导弹 (CDQ分治 三维偏序 DP)

    题意 略- 分析 就是求最长不上升子序列,坐标取一下反就是求最长不下降子序列,比较大小是二维(h,v)(h,v)(h,v)的比较.我们不看概率,先看第一问怎么求最长不降子序列.设f[i]f[i]f[i ...

  5. BZOJ 2244: [SDOI2011]拦截导弹 [CDQ分治 树状数组]

    传送门 题意:三维最长不上升子序列以及每个元素出现在最长不上升子序列的概率 $1A$了好开心 首先需要从左右各求一遍,长度就是$F[0][i]+F[1][i]-1$,次数就是$G[0][i]*G[1] ...

  6. BZOJ 2244 [SDOI2011]拦截导弹 ——CDQ分治

    三维偏序,直接CDQ硬上. 正反两次CDQ统计结尾的方案数,最后统计即可. #include <cstdio> #include <cstring> #include < ...

  7. BZOJ2244 [SDOI2011]拦截导弹 【cdq分治 + 树状数组】

    题目 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高于前一发的高度,其 ...

  8. bzoj2244[SDOI2011]拦截导弹

    http://www.lydsy.com/JudgeOnline/problem.php?id=2244 第$i$个导弹看成一个三元组$(i,h_i,v_i)$ 其实就是最长上升子序列的问题. 我们分 ...

  9. bzoj千题计划292:bzoj2244: [SDOI2011]拦截导弹

    http://www.lydsy.com/JudgeOnline/problem.php?id=2244 每枚导弹成功拦截的概率 = 包含它的最长上升子序列个数/最长上升子序列总个数 pre_len ...

随机推荐

  1. centos7 清除系统日志、历史记录(包括history)、登录信息

    history: # echo > .bash_history //清除保存的用户操作历史记录 # history -cw //清除所有历史 centos7 清除系统日志.历史记录.登录信息: ...

  2. 使用Hexo+Github搭建属于自己的博客(进阶)

    主题的配置:这里以NexT主题作为题材 1.安装NexT,在其文件夹中鼠标右键,点击Git Base Here.输入命令:git clone https://github.com/iissnan/he ...

  3. 【福利】送Scala语言入门视频学习资料

    没有套路真的是送!! 想要学好大数据,scala语言是必不可少的,spark和kafka等大数据重要组件都是用scala写的,想要彻底搞懂这些组件是如何运作的必须得看源码,而学习scala是看源码的必 ...

  4. 基于Asp.Net Core Mvc和EntityFramework Core 的实战入门教程系列-5

    来个目录吧: 第一章-入门 第二章- Entity Framework Core Nuget包管理 第三章-创建.修改.删除.查询 第四章-排序.过滤.分页.分组 第五章-迁移,EF Core 的co ...

  5. 关于Win10下IE11只能以管理员身份运行的处理方式

    今天无意间发现IE无法启动,后来研究发现只有用管理员身份运行才能打开,初步分析应该是用户权限的问题,在网上百度了一番,找到了处理的方法,在此分享一下 1.win+R 调出“运行”命令,输入“reged ...

  6. Linux实践二:模块

    一.基本模块的实现: 1.进程遍历打印输出 2.简单地编写一个新的系统调用(替换空的系统调用号) 基本模块学到的知识点: 1.相关指令 make oldconfig 配置内核 make 编译内核 ma ...

  7. github学习心得

    1.在GitHub上建立项目登录GitHub后,你可以在右边靠中那里找到一个按钮“New Repository”,点击过后,填入项目名称.说明和网址过后就可以创建.2.配置Git以及上传代码安装Git ...

  8. 最新一课 老师指点用Listview适配器

    上课前 <?xml version="1.0" encoding="utf-8"?>    <ScrollView xmlns:android ...

  9. [2017BUAA软工]第0次博客作业

    第一部分:结缘计算机 1.你为什么选择计算机专业?你认为你的条件如何?和这些博主比呢? 当初选择计算机专业作为自己报考大学的第一志愿,主要是看重了市场对于计算机行业人士的巨大需求,同时也感慨于计算机行 ...

  10. PAT 1016 部分A+B

    https://pintia.cn/problem-sets/994805260223102976/problems/994805306310115328 正整数A的“D~A~(为1位整数)部分”定义 ...