【BZOJ2244】[SDOI2011]拦截导弹(CDQ分治)

题面

BZOJ

洛谷

题解

不难发现这就是一个三维偏序+\(LIS\)这样一个\(dp\)。

那么第一问很好求,直接\(CDQ\)分治之后\(dp\)就好了。

那么第二问呢?首先如果记一个方案数,显然就可以在转移的时候求出以每个点开头/结尾的\(LIS\)个数,这样子在算的时候前后乘一下再除掉全部的\(LIS\)数就是答案了。

说起来好简单啊,码起来就不一样了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 50500
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n;
struct Node{int h,v,i;}p[MAX];
int lb(int x){return x&(-x);}
int c[MAX];double w[MAX];
void add(int x,int v,double W)
{
while(x<=n)
{
if(v==c[x])w[x]+=W;
else if(v>c[x])c[x]=v,w[x]=W;
x+=lb(x);
}
}
int Query(int x){int ret=0;while(x)ret=max(ret,c[x]),x-=lb(x);return ret;}
double Query(int x,int v){double ret=0;while(x)ret+=(c[x]==v)?w[x]:0,x-=lb(x);return ret;}
int f[2][MAX];double g[2][MAX];
void clear(int x){while(x<=n)c[x]=w[x]=0,x+=lb(x);}
bool cmph(Node a,Node b){return a.h>b.h;}
bool cmpv(Node a,Node b){return a.v>b.v;}
bool cmpi(Node a,Node b){return a.i<b.i;}
void CDQ(int l,int r,int type)
{
if(l==r)return;
sort(&p[l],&p[r+1],cmpi);
if(type)reverse(&p[l],&p[r+1]);
int mid=(l+r)>>1;
CDQ(l,mid,type);
sort(&p[l],&p[mid+1],cmph);
sort(&p[mid+1],&p[r+1],cmph);
for(int i=mid+1,j=l;i<=r;++i)
{
while(j<=mid&&p[j].h>=p[i].h)
add(n+1-p[j].v,f[type][p[j].i],g[type][p[j].i]),++j;
int d=Query(n+1-p[i].v)+1;
if(d>f[type][p[i].i])f[type][p[i].i]=d,g[type][p[i].i]=Query(n+1-p[i].v,d-1);
else if(d==f[type][p[i].i])g[type][p[i].i]+=Query(n+1-p[i].v,d-1);
}
for(int i=l;i<=mid;++i)clear(n+1-p[i].v);
CDQ(mid+1,r,type);
}
int Sh[MAX],toth,Sv[MAX],totv;
int main()
{
n=read();
for(int i=1;i<=n;++i)p[i].h=read(),p[i].v=read(),p[i].i=i;
for(int i=1;i<=n;++i)Sh[++toth]=p[i].h;
sort(&Sh[1],&Sh[toth+1]);toth=unique(&Sh[1],&Sh[toth+1])-Sh-1;
for(int i=1;i<=n;++i)p[i].h=lower_bound(&Sh[1],&Sh[toth+1],p[i].h)-Sh;
for(int i=1;i<=n;++i)Sv[++totv]=p[i].v;
sort(&Sv[1],&Sv[totv+1]);totv=unique(&Sv[1],&Sv[totv+1])-Sv-1;
for(int i=1;i<=n;++i)p[i].v=lower_bound(&Sv[1],&Sv[totv+1],p[i].v)-Sv;
for(int i=1;i<=n;++i)f[0][i]=f[1][i]=g[0][i]=g[1][i]=1;
CDQ(1,n,0);
reverse(&p[1],&p[n+1]);
for(int i=1;i<=n;++i)p[i].v=n-p[i].v+1,p[i].h=n-p[i].h+1;
CDQ(1,n,1);
int ans=0;double sum=0;
for(int i=1;i<=n;++i)ans=max(ans,f[0][i]);
for(int i=1;i<=n;++i)if(f[0][i]==ans)sum+=g[0][i];
printf("%d\n",ans);
for(int i=1;i<=n;++i)
if(f[0][i]+f[1][i]-1!=ans)printf("0.000000 ");
else printf("%.6lf ",g[0][i]*g[1][i]/sum);
puts("");return 0;
}

【BZOJ2244】[SDOI2011]拦截导弹(CDQ分治)的更多相关文章

  1. [BZOJ2244][SDOI2011]拦截导弹 CDQ分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MB  Special Judge Description 某国为了防御敌国的导弹 ...

  2. BZOJ2244: [SDOI2011]拦截导弹(CDQ分治,二维LIS,计数)

    Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高 ...

  3. bzoj 2244: [SDOI2011]拦截导弹 cdq分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 237  Solved: ...

  4. BZOJ 2244: [SDOI2011]拦截导弹 (CDQ分治 三维偏序 DP)

    题意 略- 分析 就是求最长不上升子序列,坐标取一下反就是求最长不下降子序列,比较大小是二维(h,v)(h,v)(h,v)的比较.我们不看概率,先看第一问怎么求最长不降子序列.设f[i]f[i]f[i ...

  5. BZOJ 2244: [SDOI2011]拦截导弹 [CDQ分治 树状数组]

    传送门 题意:三维最长不上升子序列以及每个元素出现在最长不上升子序列的概率 $1A$了好开心 首先需要从左右各求一遍,长度就是$F[0][i]+F[1][i]-1$,次数就是$G[0][i]*G[1] ...

  6. BZOJ 2244 [SDOI2011]拦截导弹 ——CDQ分治

    三维偏序,直接CDQ硬上. 正反两次CDQ统计结尾的方案数,最后统计即可. #include <cstdio> #include <cstring> #include < ...

  7. BZOJ2244 [SDOI2011]拦截导弹 【cdq分治 + 树状数组】

    题目 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高于前一发的高度,其 ...

  8. bzoj2244[SDOI2011]拦截导弹

    http://www.lydsy.com/JudgeOnline/problem.php?id=2244 第$i$个导弹看成一个三元组$(i,h_i,v_i)$ 其实就是最长上升子序列的问题. 我们分 ...

  9. bzoj千题计划292:bzoj2244: [SDOI2011]拦截导弹

    http://www.lydsy.com/JudgeOnline/problem.php?id=2244 每枚导弹成功拦截的概率 = 包含它的最长上升子序列个数/最长上升子序列总个数 pre_len ...

随机推荐

  1. Luogu P3768 简单的数学题

    非常恶心的一道数学题,推式子推到吐血. 光是\(\gcd\)求和我还是会的,但是多了个\(ij\)是什么鬼东西. \[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_ ...

  2. [Spark][Python]Spark Python 索引页

    Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子

  3. python中和生成器协程相关的yield之最详最强解释,一看就懂(一)

    yield是python中一个非常重要的关键词,所有迭代器都是yield实现的,学习python,如果不把这个yield的意思和用法彻底搞清楚,学习python的生成器,协程和异步io的时候,就会彻底 ...

  4. [已解决]An unhandled exception occurred while processing the request.

    An unhandled exception occurred while processing the request. InvalidOperationException: The layout ...

  5. ASP.NETZERO 开发者指南-目录篇

    前面的话 此教程适用于 ASP.NET MVC 5.x & Angularjs 1.x  的ABP框架(收费需要授权) 所以有能力的朋友还是希望你们多多支持 土牛.购买链接:https://w ...

  6. Thrift_简介(基于C#)

    //Server: TProtocolFactory ProtocolFactory = new TBinaryProtocol.Factory(true, true); TTransportFact ...

  7. Peer Programming Project: 4 Elevators Scheduler 附加题 157 165

    1.改进电梯调度的interface 设计, 让它更好地反映现实, 更能让学生练习算法, 更好地实现信息隐藏和信息共享. 每个电梯增加目标楼层数组,这样可以更好地进行任务的分配,在我们的电梯中,这个数 ...

  8. Orcle安装环境及步骤

    Windows7环境下如何成功安装Oracle数据库      随着微软新一代操作系统 Windows7 的正式发行,使用 Windows7  的朋友也越来越多,很多人在 Windows7 环境下安装 ...

  9. C学习随笔

    1)要经常复习,一些基础的知识点,学过的.讲过的实例,应多看一下,学习并掌握编程的语法.思路.实验中可看出,不少同学对以前知识没有掌握,对讲过的实例没有理解2)要经常实践,纸上得来终觉浅,绝知此事要躬 ...

  10. JAVA常用工具类汇总

    一.功能方法目录清单: 1.getString(String sSource)的功能是判断参数是否为空,为空返回"",否则返回其值: 2.getString(int iSource ...