评:技巧性很大,需要敏锐的洞察力通过柯西不等式把分母变成一样.请记住这个变形$$(a+b+ab+1)=(a+1)(b+1)\le\sqrt{(a^2+1)(b^2+1)}$$

MT【47】求一道分式的最值的更多相关文章

  1. C语言atan2()函数:求y/x的反正切值

    头文件:#include <math.h> atan2() 函数用于求 y / x 的反正切值.其原型为:    double atan2(double y, double x); [参数 ...

  2. python_求1-2+3-4+......-100的值

    求1-2+3-4+5---100 = ? 逻辑整理: -- 本质上可以转换一下,1+3+5+--+99 -(2+4+--+100) 加减部分间隔都为2,先求1+3+5+--+99的值, 再求2+4+- ...

  3. c# 求第30位数的值

    1,1,2,3,5,8,13,21,34,55.... 求第30位数的值: 递归方法: class Program { static void Main(string[] args) { //找规律: ...

  4. POJ 2104 K-th Number ( 求取区间 K 大值 || 主席树 || 离线线段树)

    题意 : 给出一个含有 N 个数的序列,然后有 M 次问询,每次问询包含 ( L, R, K ) 要求你给出 L 到 R 这个区间的第 K 大是几 分析 : 求取区间 K 大值是个经典的问题,可以使用 ...

  5. html标签内部简单加js 一维数组求最大值 最小值两个值位置和数字金字塔图形

     html标签内部,简单加js <a href=""></a><!DOCTYPE html PUBLIC "-//W3C//DTD XHTM ...

  6. E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)

    E. Vus the Cossack and a Field (求一有规律矩形区域值) 题意:给出一个原01矩阵,它按照以下规则拓展:向右和下拓展一个相同大小的 0 1 分别和原矩阵对应位置相反的矩阵 ...

  7. MT【57】2017联赛一试解答倒数第二题:一道不等式的最值

    注:康拓诺维奇不等式的应用

  8. MT【48】分式连加形式下求不等式解集的区间长度

    ] 评:此题有分析的味道在里面,用到了n次多项式的韦达定理,用到了零点存在定理以及代数基本定理:n次多项式在复数域上有n个根.

  9. 求n阶方阵的值(递归)

    若有n*n阶行列式A,则: |A|=A[1][1]*M[1][1]+A[1][2]*M[1][2]+...A[1][n]*M[1][n]:其中M[1][i] 表示原矩阵元素A[1][i]的代数余子式: ...

随机推荐

  1. 一篇文章让你彻底掌握 shell 语言

    一篇文章让你彻底掌握 shell 语言 由于 bash 是 Linux 标准默认的 shell 解释器,可以说 bash 是 shell 编程的基础. 本文主要介绍 bash 的语法,对于 linux ...

  2. Maven学习笔记-04-Eclipse下maven项目在Tomcat7和Jetty6中部署调试

    现在最新的Eclipse Luna Release 已经内置了Maven插件,这让我们的工作简洁了不少,只要把项目直接导入就可以,不用考虑插件什么的问题,但是导入之后的项目既可以部署在Tomcat也可 ...

  3. Luogu4921/4931 情侣?给我烧了! 组合、递推

    4921 4931 第一眼看着就像容斥,但是容斥不怎么好做-- 第二眼想到错排,结果错排公式糊上去错了-- 不难考虑到可以先选\(K\)对情侣坐在一起,剩下\(N-K\)对错排 选\(K\)对情侣坐在 ...

  4. (转)Ubuntu无法找到add-apt-repository问题的解决方法

    原文 网上查了一下资料,原来是需要 python-software-properties 于是 apt-get install python-software-properties 除此之外还要安装 ...

  5. eclipse取消空格、等号、分号自动录入

    默认eclipse中按空格.等号.分号等键时,会将提示框中的文字输入到编辑内容中,但是很多时候我们并不希望录入,可如下设置. 1.打开 Eclipse -> Window -> Perfe ...

  6. (6)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- AOP框架

    AOP 框架基础 要求懂的知识:AOP.Filter.反射(Attribute). 如果直接使用 Polly,那么就会造成业务代码中混杂大量的业务无关代码.我们使用 AOP (如果不了解 AOP,请自 ...

  7. react/React Native 在 import 导入时,有的带花括号{},有的不带原理解析

    在使用import引用模块时,如何正确使用{} 例如:有两个文件,home.js.user.js 一:不使用{}: 当需要在home.js中引入user.js的时候 //home.js 文件中impo ...

  8. Web系统页面打印技术实现与分析

    1 Web页面打印概述应用WEB化,不论对开发商,还是对用户来说,实在是一种很经济的选择,因为基于WEB的应用,客户端的规则很简单,容易学习,容易维护,容易发布.在WEB系统中,打印的确是个烦人的问题 ...

  9. 2016-03-22 OneZero团队 Daily Scrum Meeting

    会议时间: 2016-03-22 9:33-9:57am 会议内容: 一.在原有Sprint Backlog基础上,我们加了亮点(摇一摇功能:随机选取一条记录在界面显示,以提醒主页君回忆) 需求分析图 ...

  10. #科委外文文献发现系统——导出word模板1.0

    ps:该篇文档由实验室ljg提供. Crowdsourcing 一.             技术简介 Crowdsourcing, a modern business term coined in ...