传送门

这道题信息量好大啊

1.Dilworth定理

  •   Dilworth定理:对于一个偏序集,最少链划分等于最长反链长度。
  •   Dilworth定理的对偶定理:对于一个偏序集,其最少反链划分数等于其最长链的长度。

  其实就是说,对于一个序列,

  最大上升子序列长度 = 不上升子序列个数,最大不上升子序列长度 = 上升子序列个数,

  最大下降子序列长度 = 不下降子序列个数,最大不下降子序列长度 = 下降子序列个数。

  所以这道题:Q1求最大不上升子序列长度,Q2求不上升子序列个数 = 最大上升子序列长度。

2.STL函数:lower_bound( )和upper_bound( )

lower_bound(num,num+L,A)-num; //返回第一个 >=A 的值
upper_bound(num,num+L,A)-num; //返回第一个 >A 的值
lower_bound(num,num+L,A,greater<int>())-num; //返回第一个 <=A 的值
upper_bound(num,num+L,A,greater<int>())-num; //返回第一个 <A 的值

  只能在单调序列里调用,从前往后找

  lower是>=,upper是>,用greater或者cmp改成<= / <

  得到的是元素的地址,最后减去数组的地址就得到了元素下标。

  其实就是代替了二分查找...二分的写法见P1439 【模板】最长公共子序列

  需要调用<algorithm>库,如果用greater还要调用<iostream>

注意:

1.读入时

while(scanf("%d",&a[++n])!=EOF) {
continue;
}
n--;

因为是先进行++n操作再判断的,所以多了一次,最后要n--.

2.Q1每次要求更小的,所以up1[0]要赋值为INF,不能为0.

代码如下

动态规划( O(n^2),100分 )

#include<cstdio>
#include<iostream>
using namespace std;
const int maxn = ;
int n,ans,a[maxn],f[maxn],g[maxn];
int main() {
while(scanf("%d",&a[++n])!=EOF) {
f[n] = ;
g[n] = ;
}
for(int i = n; i >= ; i--)
for(int j = i+; j <= n; j++)
if(a[i] >= a[j])
f[i] = max(f[i],f[j]+);
for(int i = ; i <= n; i++)
ans = max(ans,f[i]);
printf("%d\n",ans);
ans = ;
for(int i = n; i >= ; i--)
for(int j = i+; j <= n; j++)
if(a[i] < a[j])
g[i] = max(g[i],g[j]+);
for(int i = ; i <= n; i++)
ans = max(ans,g[i]);
printf("%d\n",ans);
return ;
}

正解( O(nlogn),200分 )

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn = ;
int n,ans,a[maxn],up1[maxn],up2[maxn];
int main() {
while(scanf("%d",&a[++n])!=EOF) {
continue;
}
n--;
up1[] = maxn;
for(int i = ; i <= n; i++) {
if(a[i] <= up1[ans])
up1[++ans] = a[i];
else {
int k = upper_bound(up1+,up1+ans+,a[i],greater<int>())-up1;
up1[k] = a[i];
}
}
printf("%d\n",ans);
ans = ;
up2[] = a[];
for(int i = ; i <= n; i++) {
if(a[i] > up2[ans])
up2[++ans] = a[i];
else {
int k = lower_bound(up2+,up2+ans+,a[i])-up2;
up2[k] = a[i];
}
}
printf("%d\n",ans);
return ;
}

Luogu P1020 导弹拦截的更多相关文章

  1. luogu P1020 导弹拦截 x

    首先上题目~ luogu P1020 导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都 ...

  2. 【LIS】Luogu P1020 导弹拦截

    昨天晚上看蓝书,看到了LIS问题的优化解法. 是比O(n方)更快的解法,实际上是一个常数优化. 先讲一下朴素的解法: 一个集合a,a[i]是第i个元素.设dp[i]为以编号为i的元素结尾的最长不上升子 ...

  3. Luogu 1020 导弹拦截(动态规划,最长不下降子序列,二分,STL运用,贪心,单调队列)

    Luogu 1020 导弹拦截(动态规划,最长不下降子序列,二分,STL运用,贪心,单调队列) Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺 ...

  4. codevs1044 拦截导弹==洛谷 P1020 导弹拦截

    P1020 导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天 ...

  5. p1020导弹拦截

    传送门 P1020导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度 ...

  6. 【题解】P1020 导弹拦截

    [题解]P1020 导弹拦截 从n^2到nlogn 第二问就是贪心,不多说 第一问: 简化题意:求最长不下降子序列 普通n^2: for (int i = 1; i <= n; i++) for ...

  7. 洛谷 P1020导弹拦截题解

    洛谷链接:https://www.luogu.org/problem/P1020 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到 ...

  8. codevs——T1044 拦截导弹 || 洛谷——P1020 导弹拦截

    http://codevs.cn/problem/1044/ || https://www.luogu.org/problem/show?pid=1020#sub 时间限制: 1 s  空间限制: 1 ...

  9. P1020 导弹拦截(LIS)

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

随机推荐

  1. session一致性架构设计

    什么是session? 由于HTTP协议是无状态的协议,因此它不会去记住上一次浏览器访问服务器时的信息.同一个用户的两次操作,与两个不同用户的操作,对它来说是一样的. 这样虽然满足了互联网web应用的 ...

  2. Vue.js MVVM及数据绑定原理

    什么是数据驱动 数据驱动是vuejs最大的特点.在vuejs中,所谓的数据驱动就是当数据发生变化的时候,用户界面发生相应的变化,开发者不需要手动的去修改dom. 比如说我们点击一个button,需要元 ...

  3. 【pygame游戏编程】第四篇-----打字测速游戏

    下面我们一起用pygame编写一个打字测速游戏 这是一个很实用的有趣的小游戏: 开始之前先来学习几个小函数: 1. ord(ch) python内置函数,传入一个字符,返回字符的ascii码 2.ch ...

  4. 【读书笔记】iOS-iCloud文件备份

    iOS应用在运行时经常要创建一些文件,不过这些文件要如何存放呢?有没有什么要求呢? 由于手机资源空间有限而且考虑到Apple推出的iCloud,我们确实要对创建出的文件按照作用的不同,分出几种类别出来 ...

  5. js 乘除法小数问题

    因为经常需要js来处理显示,就做下笔记 除法: function accDiv(arg1, arg2) { var t1 = 0, t2 = 0, r1, r2; try { t1 = arg1.to ...

  6. js replace替换 忽略大小写问题

    实现就是控制台的内容“abc”,但是后台返回的是“ABC”,这个时候在前台遍历,需要将后台返回的在控制台标红. 当然控制台可以是 abc Abc等大小写混合,以下代码都可替换. var flagnew ...

  7. Linux 硬盘格式化、分区、挂载、卸载、删除分区,Linux重新调整分区

    目录 Linux 硬盘格式化.分区.挂载.卸载.删除分区 0. 查看挂载情况 1. 查看硬盘信息 2. 创建分区 3. 查看磁盘信息 4. 格式化分区 5. 将分区信息写入fstab, 设置开机自动挂 ...

  8. [20180608]Wrong Results with IOT, Added Column and Secondary Index.txt

    [20180608]Wrong Results with IOT, Added Column and Secondary Index.txt --//链接:http://db-oriented.com ...

  9. SELinux 是什么?

    一.SELinux的历史 SELinux全称是Security Enhanced Linux,由美国国家安全部(National Security Agency)领导开发的GPL项目,它拥有一个灵活而 ...

  10. 这不是我想要的ABAP开发者

    原文在此: These Aren’t the Developers You’re Looking for 在吃饼干的过程中偶然看到这篇文章,立刻被UC化的标题吸引到了. 全文读完,感觉作者还是有点刻薄 ...