Luogu P3177 [HAOI2015]树上染色
一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙。
首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值。
然后我们考虑那种暴力转移就是那种看上去是\(O(n^3)\)实际经严格证明后时\(O(n^2)\)的DP
然后推推推推推推,一个小时过去还是一个屁
这个时候我们不禁质疑,这个鬼状态不会是错的吧。
没错,它就是错的,因为这样对于你子树上面的黑点节点之间的收益你都一无所知
然后我们联想到另外一道树上计数的题目:51Nod 1677 treecnt&&sol,然后我们又是单独考虑每一条边的贡献。
再仔细推一波可以发现一条边对于黑白点的贡献之和两边黑白点的个数有关,和具体的结构鸟关系都没有。
于是我们换一波方程,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点对总答案的贡献
然后我们枚举子树中黑色点的数量然后一个类似于背包的转移即可。
具体看CODE
#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
const int N=2005;
struct edge
{
int to,next,v;
}e[N<<1];
int head[N],size[N],n,k,cnt,x,y,z,rt=1;
long long f[N][N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void double_add(int x,int y,int z)
{
e[++cnt].to=y; e[cnt].next=head[x]; e[cnt].v=z; head[x]=cnt;
e[++cnt].to=x; e[cnt].next=head[y]; e[cnt].v=z; head[y]=cnt;
}
inline void maxer(long long &x,long long y)
{
if (y>x) x=y;
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline void DFS(int now,int fa)
{
register int i,j,s,x; size[now]=1;
f[now][0]=f[now][1]=0;
for (i=head[now];~i;i=e[i].next)
if (e[i].to!=fa) DFS(e[i].to,now),size[now]+=size[e[i].to];
for (i=head[now];~i;i=e[i].next)
if (e[i].to!=fa) for (j=min(k,size[now]);j>=0;--j)
{
for (s=0,x=min(j,size[e[i].to]);s<=x;++s)
maxer(f[now][j],f[e[i].to][s]+f[now][j-s]+1LL*e[i].v*(1LL*s*(k-s)+1LL*(size[e[i].to]-s)*(n-k-size[e[i].to]+s)));
}
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(k);
if (2*k>n) k=n-k;
memset(head,-1,sizeof(head)); memset(f,167,sizeof(f));
for (i=1;i<n;++i)
read(x),read(y),read(z),double_add(x,y,z);
DFS(rt,-1); return printf("%lld",f[rt][k]),0;
}
注意上面的一个小trick:
if (2*k>n) k=n-k;
这样对无关的常数浪费就会大大降低直接帮助我卡过了BZOJ的老爷机,不加T死
Luogu P3177 [HAOI2015]树上染色的更多相关文章
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- P3177 [HAOI2015]树上染色
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷 P3177 [HAOI2015]树上染色
题目链接 题目描述 有一棵点数为 \(N\) 的树,树边有边权.给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个 ...
- 【洛谷】P3177 [HAOI2015]树上染色
懒得复制题面了直接传送门吧 分析 直接求点与点之间的距离感觉不是很好求,所以我们考虑换一个求法. 瞄了一眼题解 距离跟路径上边的长度有关,所以我们直接来看每一条边的贡献吧(这谁想得到啊) 对于每一条边 ...
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷P3177 [HAOI2015]树上染色(树上背包)
题意 题目链接 Sol 比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献 然后考虑每条边的贡献,边的两边的答案都是可以算出来的 转移的时候背包一下. # ...
- BZOJ 4033: [HAOI2015]树上染色题解
BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
随机推荐
- Flume Channel Selector
Flume 基于Channel Selector可以实现扇入.扇出. 同一个数据源分发到不同的目的,如下图. 在source上可以定义channel selector: 1 2 3 4 5 6 7 8 ...
- k-means算法之见解(一)
k-menas算法之见解 主要内容: 一.引言 二.k-means聚类算法 一.引言: 先说个K-means算法很高大上的用处,来开始新的算法学习.美国竞选总统,选票由公民投出,总统由大家决定.在20 ...
- python第八十四天---十五周作业
后台管理页面: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...
- CSS:float: right 靠右换行的解决方法
1.float: right的使用用法:使用html代码<span style="float: right">*****</SPAN>,其中*****就是你 ...
- 【PAT】B1060 爱丁顿数(25 分)
逻辑问题,对我来说还是挺有难度的,一开始想不通 我输入数据并以数据为下标,数据出现次数为内容存储 然后从后遍历计算所有大于当前下标的元素出现的次数 最后遍历一遍确定是否为爱丁顿数,如果大于当前已经找到 ...
- js根据鼠标和键盘判断页面是否长时间未进行操作
<script> var count = 0; var outTime = 1;//分钟 window.setInterval(go, 1000); function go() { cou ...
- January 26th, 2018 Week 04th Friday
A great forest is set on fire by a small spark. 最小的火能点着最大的树林. It is just a spark, but it is enough t ...
- [bug]android monkey命令在Android N和Android O上的一点差异发现
最近再调试这个统计FPS的代码,发现代码在android N上可以正常运行,但在android O上却运行不了,拼了命的报错,给出的提示就是 ZeroDivisionError: division b ...
- BSOJ 2414 -- 【JSOI2011】分特产
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- Linux驱动的两种载入方式过程分析
一.概念简述 在Linux下能够通过两种方式载入驱动程序:静态载入和动态载入. 静态载入就是把驱动程序直接编译进内核.系统启动后能够直接调用.静态载入的缺点是调试起来比較麻烦,每次改动一个地方都要又一 ...