传送门

题意:给出$N$个直角三角形拼图和$M \times M$的网格,第$i$个直角三角形水平直角边边长为$\frac{1}{a_i}$,垂直直角边边长为$\frac{1}{b_i},$规定直角三角形只能直角顶点在右上方地摆放,直角顶点必须摆放在网格的顶点处,且水平直角边和垂直直角边必须与网格的某一条线重合,三角形可以越出网格。现在你可以将每个三角形都放大正整数$K$倍,求存在一种摆放方案使得存在一条只经过直角三角形覆盖区域的$(0,0)$到$(M,M)$的路径的$K$的最小值。$N , M \leq 100 , a_i , b_i \leq 10^6$


显然是有二分性质的

首先考虑到交换两个直角三角形对答案实际上没有影响,所以拼图的顺序是无所谓的。

所以我们选择DP作为二分的check。设$f_{i,j}$表示前$i$个拼图在横坐标为$j$时最大的纵坐标大小,转移方程用枚举当前三角形直角顶点的位置加上相似推一下就行。

 #include<bits/stdc++.h>
#define LOJ
//This code is written by Itst
#define ll long long
using namespace std; inline int read(){
int a = ;
bool f = ;
char c = getchar();
while(c != EOF && !isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(c != EOF && isdigit(c)){
a = (a << ) + (a << ) + (c ^ '');
c = getchar();
}
return f ? -a : a;
} ll tri[][] , dp[] , N , M; bool check(int mid){
memset(dp , -0x3f , sizeof(dp));
dp[] = ;
for(int i = ; i <= N ; i++)
for(int j = M ; j >= ; j--)
for(int k = j ; k >= && (j - k) * tri[i][] <= mid ; k--)
dp[j] = max(dp[j] , dp[k] + (mid - (j - k) * tri[i][]) / tri[i][]);
return dp[M] >= M;
} int main(){
#ifdef LOJ
freopen("500.in" , "r" , stdin);
//freopen("500.out" , "w" , stdout);
#endif
N = read();
M = read();
for(int i = ; i <= N ; i++){
tri[i][] = read();
tri[i][] = read();
}
int L = , R = 1e8;
while(L < R){
int mid = L + R >> ;
check(mid) ? R = mid : L = mid + ;
}
cout << L;
return ;
}

LOJ500 ZQC的拼图 二分答案、DP的更多相关文章

  1. [LOJ500]ZQC的拼图

    题目大意: 给你一个m*m的格子,让你往里面放给定的直角三角形,直角顶点必须放在右上角且不能翻转,但是可以把所有给定的三角形放大一个整数倍k,问至少放大几倍能使格子的左下角和右上角连起来?(可以超出边 ...

  2. BZOJ_1044_[HAOI2008]木棍分割_二分答案+DP+单调队列

    BZOJ_1044_[HAOI2008]木棍分割_二分答案+DP Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个 ...

  3. 洛谷 P1800 software_NOI导刊2010提高(06)(二分答案+DP检验)

    P1800 software_NOI导刊2010提高(06) 标签 二分答案 难度 普及/提高- 题目描述 一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每 ...

  4. BZOJ 1044: [HAOI2008]木棍分割(二分答案 + dp)

    第一问可以二分答案,然后贪心来判断. 第二问dp, dp[i][j] = sigma(dp[k][j - 1]) (1 <= k <i, sum[i] - sum[k] <= ans ...

  5. cogs 2652. 秘术「天文密葬法」(0/1分数规划 长链剖分 二分答案 dp

    http://cogs.pro:8080/cogs/problem/problem.php?pid=vSXNiVegV 题意:给个树,第i个点有两个权值ai和bi,现在求一条长度为m的路径,使得Σai ...

  6. 2019杭电多校第三场hdu6606 Distribution of books(二分答案+dp+权值线段树)

    Distribution of books 题目传送门 解题思路 求最大值的最小值,可以想到用二分答案. 对于二分出的每个mid,要找到是否存在前缀可以份为小于等于mid的k份.先求出这n个数的前缀和 ...

  7. 洛谷P3957 跳房子 题解 二分答案/DP/RMQ

    题目链接:https://www.luogu.org/problem/P3957 这道题目我用到了如下算法: 线段树求区间最大值: 二分答案: DP求每一次枚举答案g时是否能够找到 \(\ge k\) ...

  8. UVALive 5983 二分答案+dp

    想了很久都想不出怎么dp,然后发现有些例子,如果你开始不确定起始值的话,是不能dp的,每种状态都有可能,所以只能二分一个答案,确定开始的val值,来dp了. #include <cstdio&g ...

  9. BZOJ 1044 木棍分割(二分答案 + DP优化)

    题目链接  木棍分割 1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3830  Solved: 1453[S ...

随机推荐

  1. 【读书笔记】iOS-设计模式

    一个可复用的解决方案,用于处理特定场景下的常见问题.一种设计模式并不是一个可以直接转化为代码的已完工设计.它是对于如何解决问题的一种描述或者模板,可以用在许多不同的场合. 参考资料:<iOS W ...

  2. Linux 学习笔记之超详细基础linux命令 Part 9

    Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 8----------------- ...

  3. ADB命令行控制界面开关

    以下命令需要root权限:   svc命令     这个脚本在/system/bin目录下,这个命令可以用来控制电源管理,wifi开关,数据开关(就是上网流量) svc power stayon [t ...

  4. Kotlin入门(14)继承的那些事儿

    上一篇文章介绍了类对成员的声明方式与使用过程,从而初步了解了类的成员及其运用.不过早在<Kotlin入门(12)类的概貌与构造>中,提到MainActivity继承自AppCompatAc ...

  5. (网页)js最新手机号码、电话号码正则表达式

    正则表达式(regular expression)是一个描述字符模式的对象.使用JavaScript正则表达式可以进行强大的模式匹配和文本检索与替换功能. 手机号码正则表达式验证. function ...

  6. C#重试公用类

    //Retry机制 public static class RetryExecutor { /// <summary> /// 重试零个参数无返回值的方法 /// </summary ...

  7. Mac命令行使用tree查看目录结构

    默认tree命令是无法使用的,可以使用homebrew install tree安装. 如果直接使用tree,查看的目录里面含有中文字符的目录或文件时会出现汉字不能显示的问题,可以使用tree -N查 ...

  8. Pygame安装教程

    1.python --version  查看安装的Python版本, pip --version  查看安装的pip版本, 升级pip命令: python -m pip install --upgra ...

  9. Some reading, some thinking.

    update:感谢助教0 0又学会一招,play 了一下CSS Part 1 · Reading Author Article Note Madcola <两年波折路(考研.工作.考研)> ...

  10. 控件布局_LinearLayout的嵌套

    import android.os.Bundle; import android.app.Activity; public class Layout03 extends Activity { @Ove ...