In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains npositive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
using namespace std;
#define eps 1e-7
int n,k;
double a[],b[],t[]; double gh(double x)
{
for(int i=;i<n;i++)
t[i]=a[i]-x*b[i];
sort(t,t+n);
double ans=;
for(int i=k;i<n;i++)
ans+=t[i];
return ans;
} int main()
{
while(scanf("%d %d",&n,&k))
{
if(n==&&k==) break;
for(int i=;i<n;i++)
scanf("%lf",&a[i]);
for(int i=;i<n;i++)
scanf("%lf",&b[i]);
double l=0.0,r=1.0,mid;
while(r-l>eps)
{
mid=(l+r)/;
if(gh(mid)>) l=mid;
else r=mid;
}
printf("%1.f\n",l*);
}
return ;
}

B - Dropping tests的更多相关文章

  1. POJ2976 Dropping tests(二分+精度问题)

    ---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...

  2. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

  3. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  4. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  5. [poj P2976] Dropping tests

    [poj P2976] Dropping tests Time Limit: 1000MS  Memory Limit: 65536K Description In a certain course, ...

  6. POJ 2976 Dropping tests (0/1分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4654   Accepted: 1587 De ...

  7. HDU2976 Dropping tests 2017-05-11 18:10 39人阅读 评论(0) 收藏

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12187   Accepted: 4257 D ...

  8. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  9. 二分算法的应用——最大化平均值 POJ 2976 Dropping tests

    最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...

  10. 【POJ2976】Dropping Tests(分数规划)

    [POJ2976]Dropping Tests(分数规划) 题面 Vjudge 翻译在\(Vjudge\)上有(而且很皮) 题解 简单的\(01\)分数规划 需要我们做的是最大化\(\frac{\su ...

随机推荐

  1. 让UITableView的section header view不悬停的方法

    当 UITableView 的 style 属性设置为 Plain 时,这个tableview的section header在滚动时会默认悬停在界面顶端.取消这一特性的方法有两种: 将 style 设 ...

  2. Ubuntu 14.03 安装mysql

    Ubuntu下安装MySQL及开启远程访问 2017年02月07日 一.Ubuntu上安装MySQL非常简单只需要几条命令就可以完成. sudo apt-get install mysql-serve ...

  3. Python 多线程、进程

    本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者 ...

  4. ElasicSearch(1)

    ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Apach ...

  5. git 提交小备注

    总结: ·  git add -A  提交所有变化 ·  git add -u  提交被修改(modified)和被删除(deleted)文件,不包括新文件(new) ·  git add .  提交 ...

  6. week0713.5 newspaper 安装问题

    然后爆红说nltk==2.0.5 太老了 所以我们 把包下载下来将requirements文件中nltk==2.0.5改成3.3.0 然后 将包打包 然后安装这个包就OK 下载newpaper wge ...

  7. java应用健康检查

    本文主要针对自己手写shell监控应用状态,有可系统解决方案的,比如K8S,可以略过 #!/bin/sh#health_check.sh count=`ps -ef | grep test.jar | ...

  8. java爬虫框架webmagic学习(一)

    1. 爬虫的分类:分布式和单机 分布式主要就是apache的nutch框架,java实现,依赖hadoop运行,学习难度高,一般只用来做搜索引擎开发. java单机的框架有:webmagic和webc ...

  9. 【python深入】collections-Counter使用总结

    关于collections的使用,首先介绍:Counter的使用 需要执行:from collections import Counter 在很多使用到dict和次数的场景下,Python中用Coun ...

  10. HashMap的tableSizeFor方法解读

    static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> ...