In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains npositive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
using namespace std;
#define eps 1e-7
int n,k;
double a[],b[],t[]; double gh(double x)
{
for(int i=;i<n;i++)
t[i]=a[i]-x*b[i];
sort(t,t+n);
double ans=;
for(int i=k;i<n;i++)
ans+=t[i];
return ans;
} int main()
{
while(scanf("%d %d",&n,&k))
{
if(n==&&k==) break;
for(int i=;i<n;i++)
scanf("%lf",&a[i]);
for(int i=;i<n;i++)
scanf("%lf",&b[i]);
double l=0.0,r=1.0,mid;
while(r-l>eps)
{
mid=(l+r)/;
if(gh(mid)>) l=mid;
else r=mid;
}
printf("%1.f\n",l*);
}
return ;
}

B - Dropping tests的更多相关文章

  1. POJ2976 Dropping tests(二分+精度问题)

    ---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...

  2. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

  3. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  4. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  5. [poj P2976] Dropping tests

    [poj P2976] Dropping tests Time Limit: 1000MS  Memory Limit: 65536K Description In a certain course, ...

  6. POJ 2976 Dropping tests (0/1分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4654   Accepted: 1587 De ...

  7. HDU2976 Dropping tests 2017-05-11 18:10 39人阅读 评论(0) 收藏

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12187   Accepted: 4257 D ...

  8. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  9. 二分算法的应用——最大化平均值 POJ 2976 Dropping tests

    最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...

  10. 【POJ2976】Dropping Tests(分数规划)

    [POJ2976]Dropping Tests(分数规划) 题面 Vjudge 翻译在\(Vjudge\)上有(而且很皮) 题解 简单的\(01\)分数规划 需要我们做的是最大化\(\frac{\su ...

随机推荐

  1. centOS7安装kafka和zookeeper

    wget http://mirrors.hust.edu.cn/apache/kafka/2.0.0/kafka_2.11-2.0.0.tgz tar zxvf kafka_2.-.tgz cd ka ...

  2. VS2010 永久配置OpenCv2.4.9 及转换到COFF 期间失败:文件无效或损坏,解决方法

    1.下载OpenCv2.4.9(win pack):http://opencv.org/releases.html 下载完成后,进行解压(win7 64位系统) 2.环境配置,配置如下图所示: 找到p ...

  3. linux 时间和时区设置

    在linux中与时间相关的文件有 /etc/localtime /etc/timezone 其中,/etc/localtime是用来描述本机时间,而 /etc/timezone是用来描述本机所属的时区 ...

  4. C#设计模式(4)——抽象工厂模式(Abstract Factory)

    简单工厂模式: 简单工厂模式的工厂类随着产品类的增加需要增加额外的代码 工厂方法模式: 工厂方法模式每个具体工厂类只完成单个实例的创建,所以它具有很好的可扩展性 但是在实际应用中,一个工厂不止会创建单 ...

  5. Ubuntu 14.04 tomcat配置

    在tomcat-users.xml中添加了以下代码即可 <role rolename="tomcat"/> <role rolename="role1& ...

  6. Failed to start component [StandardEngine[Tomcat].StandardHost[localhost].StandardContext[]]

    今天在测试项目代码时,在idea中配置tomcat7插件运行后一直报如下错误: 解决方案:看了网上大多数办法都是修改xml文件配置,感觉并不适用,最后看到比较靠谱解释如下: pom.xml中jar包发 ...

  7. Spring中AOP主要用来做什么。Spring注入bean的方式。什么是IOC,什么是依赖注入

    Spring中主要用到的设计模式有工厂模式和代理模式. IOC:Inversion of Control控制反转,也叫依赖注入,通过 sessionfactory 去注入实例:IOC就是一个生产和管理 ...

  8. js:作用域总结1

    先说几个概念: 1.js代码从上往下执行 2.变量提升: 变量提升是浏览器的一个功能,在运行js代码之前,浏览器会给js一个全局作用域叫window,window分两个模块,一个叫内存模块,一个叫运行 ...

  9. STL里的内存池实现

    这个貌似有点复杂,解决的主要问题 就是 减少 内存分配次数,减少用户态核心态切换中断次数,提高运行速度,预分配 和线程池一个道理,预分配 ////////////////////自由链表 union ...

  10. 100-days: sixteen

    Title: The world's most expensive cities 生活成本最高的城市 For the first time in its 30-year history, the Wo ...