Codeforces.348D.Turtles(容斥 LGV定理 DP)
\(Description\)
给定\(n*m\)的网格,有些格子不能走。求有多少种从\((1,1)\)走到\((n,m)\)的两条不相交路径。
\(n,m\leq 3000\)。
\(Solution\)
容斥,用总方案数减去路径一定相交的方案数。
怎么算呢?注意到两条相交的路径(一定)可以看做从\((1,2)\)到\((n,m-1)\)和从\((2,1)\)到\((n-1,m)\)的两条路径。总方案数也可以看做从\((1,2)\)到\((n-1,m)\)和从\((2,1)\)到\((n,m-1)\)的两条路径(如果有相交可以对称过去得到这样的两条路径)。
所以\((1,2)\)到\((n-1,m)\)的方案数,乘上\((2,1)\)到\((n,m-1)\)的方案数,减去,\((1,2)\)到\((n-1,m)\)的方案数,乘上\((2,1)\)到\((n-1,m)\)的方案数,就是答案了。
其实我也还是感觉有点迷...
其实有一个引理:Lindström–Gessel–Viennot lemma。
下面就粘attack的了。
这个定理是说点集\(A=\{a1,a2,…an\}\)到\(B=\{b1,b2,...,bn\}\)的不相交路径条数等于行列式$$\begin{bmatrix}e(a_1, b_1) & e(a_1, b_2) & \dots & e(a_1, b_n) \
e(a_2, b_1) & e(a_2, b_2) & \dots & e(a_2, b_n) \
\vdots & \vdots & \ddots & \vdots \
e(a_n, b_1) & e(a_n, b_2) & \dots & e(a_n, b_n) \
\end{bmatrix}$$的值。其中\(e(x,y)\)表示从\(x\)到\(y\)的路径条数
定理的本质还是容斥。
本题,我们需要找到两条不相交的路径。注意到任何一对合法的路径一定可以表示为,一条从\((1,2)\)出发到\((n−1,m)\),另一条从\((2,1)\)出发到\((n,m−1)\)。
那么选取\(A=\{(1,2)\ (2,1)\},B=\{(n−1,m)\ (n,m−1)\}\),带入到上述定理即可求解。
事实上只用一遍DP就可以了(两个DP数组,分别表示从\((1,2)\)和\((2,1)\)出发,for到\((n,m)\)就可以了)。。
也可以加fread,懒得改了。
//498ms 44000KB
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
#define Mod(x) x>=mod&&(x-=mod)
const int N=3005;
bool mp[N][N];
int Calc(int sx,int sy,int tx,int ty)
{
static int f[N][N];
memset(f,0,sizeof f);
f[sx-1][sy]=1;//Init: f[sx][sy]=mp[sx][sy]==1;
for(int i=sx; i<=tx; ++i)
for(int j=sy; j<=ty; ++j)
mp[i][j]?(f[i][j]=f[i-1][j]+f[i][j-1],Mod(f[i][j])):0;
return f[tx][ty];
}
int main()
{
int n,m; scanf("%d%d",&n,&m);
char s[N];
for(int i=1; i<=n; ++i)
{
scanf("%s",s+1);
for(int j=1; j<=m; ++j) mp[i][j]=s[j]=='.';
}
printf("%I64d\n",(1ll*Calc(1,2,n-1,m)*Calc(2,1,n,m-1)%mod+mod-1ll*Calc(1,2,n,m-1)*Calc(2,1,n-1,m)%mod)%mod);
return 0;
}
Codeforces.348D.Turtles(容斥 LGV定理 DP)的更多相关文章
- codeforces 348D Turtles
codeforces 348D Turtles 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define fi first ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- [Hdu-5155] Harry And Magic Box[思维题+容斥,计数Dp]
Online Judge:Hdu5155 Label:思维题+容斥,计数Dp 题面: 题目描述 给定一个大小为\(N*M\)的神奇盒子,里面每行每列都至少有一个钻石,问可行的排列方案数.由于答案较大, ...
- CodeForces 348D Turtles(LGV定理)题解
题意:两只乌龟从1 1走到n m,只能走没有'#'的位置,问你两只乌龟走的时候不见面的路径走法有几种 思路:LGV定理模板.但是定理中只能从n个不同起点走向n个不同终点,那么需要转化.显然必有一只从1 ...
- bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp
LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...
- cf348D. Turtles(LGV定理 dp)
题意 题目链接 在\(n \times m\)有坏点的矩形中找出两条从起点到终点的不相交路径的方案数 Sol Lindström–Gessel–Viennot lemma的裸题? 这个定理是说点集\( ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- LOJ3053 十二省联考2019 希望 容斥、树形DP、长链剖分
传送门 官方题解其实讲的挺清楚了,就是锅有点多-- 一些有启发性的部分分 L=N 一个经典(反正我是不会)的容斥:最后的答案=对于每个点能够以它作为集合点的方案数-对于每条边能够以其两个端点作为集合点 ...
- 【BZOJ】4767: 两双手【组合数学】【容斥】【DP】
4767: 两双手 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1057 Solved: 318[Submit][Status][Discuss] ...
随机推荐
- Web前端渗透测试技术小结(一)
首先端正一下态度不可干违法的事 1.SQL注入测试 对于存在SQL注入的网页,使用SQL语句进行关联查询(仿照C/S模式)eg http://www.foo.com/user.php?id=1 常 ...
- linux安装MongoDB
安装 32bit的mongodb最大只能存放2G的数据,64bit就没有限制 到官网,选择合适的版本下载,本次下载3.4.0版本 解压 tar -zxvf mongodb-linux-x86_64-u ...
- Jmeter 自动化测试报告扩展
首先了解下生成测试报告的过程,我们看到的测试报告是由.jtl格式转换为.html,html报告的样式由extras目录下xsl文件决定.优化测试报告需要分为两部分内容,首先我们要优化输出的测试内容,其 ...
- logical_backup: expdp/impdp
Table of Contents 1. 注意事项 2. 前期准备 3. 常用参数及示例 4. 常用语句示例 5. 交互式命令 6. 技巧 6.1. 不生成文件直接导入目标数据库 6.2. 通过she ...
- 如何查看响应端口号被个程序占用(Windows)
我们以80端口为例,在dos输入命令“ netstat -aon|findstr "80" 后按回车显示如下,可以看到占用80端口对应的程序的PID号为1752 ...
- cnetos 7 mariadb 集群报错分析解答
1.故障1:通过查看/var/log/message 发现报错 2017-04-14 14:44:10 139845276428544 [ERROR] WSREP: It may not be saf ...
- Leetcode刷题第003天
一.只出现一次的数字 class Solution { public: int singleNumber(vector<int>& nums) { ; for (auto num ...
- C#学习-类的成员
定义完类之后,还需在类中定义成员. 类的成员包括字段.属性.方法和构造函数等,它们与类一样,也都有自己的访问权限.以下是 public,同一个程序集或引用该程序集的其他程序集都可以访问 private ...
- (转载)C#压缩解压zip 文件
转载之: C#压缩解压zip 文件 - 大气象 - 博客园http://www.cnblogs.com/greatverve/archive/2011/12/27/csharp-zip.html C# ...
- CTAP: Complementary Temporal Action Proposal Generation (ECCV2018)
互补时域动作提名生成 这里的互补是指actionness score grouping 和 sliding window ranking这两种方法提proposal的结合,这两种方法各有利弊,形成互补 ...