PRML读书笔记_绪论
一、基本名词
泛化(generalization)
训练集所训练的模型对新数据的适用程度。
监督学习(supervised learning)
训练数据的样本包含输入向量以及对应的目标向量。
- 分类( classification ):给每个输入向量分配到有限数量离散标签中的一个。
- 回归( regression ):输出由一个或者多个连续变量组成。
无监督学习(unsupervised learning)
训练数据由一组输入向量 x 组成,没有任何对应的目标值。
- 聚类(clustering):发现数据中相似样本的分组。
- 密度估计(density estimation):决定输入空间中数据的分布。
反馈学习(reinforcement learning)
在给定的条件下,找到合适的动作,使得奖励达到最大值。学习问题没有给定最优输出的用例。这些用例必须在一系列的实验和错误中被发现。
反馈学习的一个通用的特征是探索( exploration )和利用( exploitation )的折中,过分地集中于探索或者利用都会产生较差的结果。
- 探索:是指系统尝试新类型的动作,
- 利用:是指系统使用已知能产生较高奖励的动作。
二、概率论
1.概率论的两个基本规则:加和规则( sumrule )、乘积规则( product rule )

2.贝叶斯定理( Bayes' theorem )

贝叶斯定理中的分母可以用出现在分子中的项表示:

- 先验概率( prior probability ):\(p(Y)\) 在未知\(X\)分布时,我们已知\(Y\)分布,顾称\(p(Y)\)为先验。
- 后验概率( posterior probability ):\(p(Y|X)\) 在得知\(X\)分布后,加入\(p(X)\)的约束可以的到条件概率\(p(Y|X)\),称之为后验。
3.概率密度
概率密度( probability density )

满足下面两个条件:

一个变量的变化\(x = g(y)\) , 那么函数\(f (x)\)就变成了$ f ̃ (y) = f (g(y))$

累积分布函数( cumulative distribution function )

概率密度函数加和规则和乘积规则

4.期望和协方差
期望( expectation )
离散变量

连续变量

方差( variance )

可以化为:

协方差( covariance )
协方差是对两个随机变量 x 和 y而言:

在两个随机向量 x 和 y 的情形下,协方差是一个矩阵:

PRML读书笔记_绪论的更多相关文章
- PRML读书笔记_绪论曲线拟合部分
一.最小化误差函数拟合 正则化( regularization )技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值.这种惩罚项最简单的形式采用所有系数的平方和的形式.这推导出了误差函数的修 ...
- PRML读书笔记——3 Linear Models for Regression
Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫bas ...
- PRML读书笔记——机器学习导论
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_上
完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_下
数据读取部分实现 文中采用了tensorflow的从文件直接读取数据的方式,逻辑流程如下, 实现如下, # Author : Hellcat # Time : 2017/12/9 import os ...
- PRML读书笔记——线性回归模型(上)
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. ...
- The Way to Go读书笔记_第4章_基本结构和基本数据类型
“_”标识符 _ 本身就是一个特殊的标识符,被称为空白标识符.它可以像其他标识符那样用于变量的声明或赋值(任何类型都可以赋值给它),但任何赋给这个标识符的值都将被抛弃,因此这些值不能在后续的代码中使用 ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...
随机推荐
- Qt 编程指南10 QImage Mat QPixmap转换
//示例 pushButtonOpenPicBig按钮clicked单击动作触发 void Qt_Window::on_pushButtonOpenPicBig_clicked() { strin ...
- oracle12C 创建PDB
1.根据数据库现有模板创建PDB CREATE PLUGGABLE DATABASE ssptrad ADMIN USER sspIDENTIFIED BY oracle roles=(dba) fi ...
- linux外接显示屏,关掉本身的笔记本电脑
https://blog.csdn.net/a2020883119/article/details/79561035 先用xrandr命令查看: eDP-1 connected eDP-1是连接着的 ...
- OpenCV——轮廓填充drawContours函数解析
函数的调用形式 void drawContours(InputOutputArray image, InputArrayOfArrays contours, int contourIdx, const ...
- webpack4升级extract-text-webpack-plugin和UglifyJsPlugin问题
webpack4升级extract-text-webpack-plugin和UglifyJsPlugin问题 1. 使用了extract-text-webpack-plugin插件后,编译出错,代码 ...
- Python实现杨辉三角,超详细!
巧妙实现杨辉三角代码 def triangles(): N=[1] #初始化为[1],杨辉三角的每一行为一个list while True: yield N #yield 实现记录功能,没有下一个ne ...
- AI 最小二乘法
最小二乘法 参考链接: https://zhuanlan.zhihu.com/p/27204466
- lesson 8:小程序
程序源代码: //20163683 蔡金阳 信1605-3 import java.io.*; import java.util.Scanner; public class kaoshi { publ ...
- html table隐藏列
隐藏table表的第一列,适合显示信息,隐藏ID主键. <html> <head> <meta http-equiv="content-type" c ...
- KVM虚拟机管理——虚拟机克隆
1. 概述2. 部署基本操作系统虚拟机3. 配置虚拟机3.1 修改/etc/sysconfig/network3.2 删除/etc/sysconfig/network-scripts/ifcfg-et ...