PRML读书笔记_绪论
一、基本名词
泛化(generalization)
训练集所训练的模型对新数据的适用程度。
监督学习(supervised learning)
训练数据的样本包含输入向量以及对应的目标向量。
- 分类( classification ):给每个输入向量分配到有限数量离散标签中的一个。
- 回归( regression ):输出由一个或者多个连续变量组成。
无监督学习(unsupervised learning)
训练数据由一组输入向量 x 组成,没有任何对应的目标值。
- 聚类(clustering):发现数据中相似样本的分组。
- 密度估计(density estimation):决定输入空间中数据的分布。
反馈学习(reinforcement learning)
在给定的条件下,找到合适的动作,使得奖励达到最大值。学习问题没有给定最优输出的用例。这些用例必须在一系列的实验和错误中被发现。
反馈学习的一个通用的特征是探索( exploration )和利用( exploitation )的折中,过分地集中于探索或者利用都会产生较差的结果。
- 探索:是指系统尝试新类型的动作,
- 利用:是指系统使用已知能产生较高奖励的动作。
二、概率论
1.概率论的两个基本规则:加和规则( sumrule )、乘积规则( product rule )
2.贝叶斯定理( Bayes' theorem )
贝叶斯定理中的分母可以用出现在分子中的项表示:
- 先验概率( prior probability ):\(p(Y)\) 在未知\(X\)分布时,我们已知\(Y\)分布,顾称\(p(Y)\)为先验。
- 后验概率( posterior probability ):\(p(Y|X)\) 在得知\(X\)分布后,加入\(p(X)\)的约束可以的到条件概率\(p(Y|X)\),称之为后验。
3.概率密度
概率密度( probability density )
满足下面两个条件:
一个变量的变化\(x = g(y)\) , 那么函数\(f (x)\)就变成了$ f ̃ (y) = f (g(y))$
累积分布函数( cumulative distribution function )
概率密度函数加和规则和乘积规则
4.期望和协方差
期望( expectation )
离散变量
连续变量
方差( variance )
可以化为:
协方差( covariance )
协方差是对两个随机变量 x 和 y而言:
在两个随机向量 x 和 y 的情形下,协方差是一个矩阵:
PRML读书笔记_绪论的更多相关文章
- PRML读书笔记_绪论曲线拟合部分
一.最小化误差函数拟合 正则化( regularization )技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值.这种惩罚项最简单的形式采用所有系数的平方和的形式.这推导出了误差函数的修 ...
- PRML读书笔记——3 Linear Models for Regression
Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫bas ...
- PRML读书笔记——机器学习导论
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_上
完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_下
数据读取部分实现 文中采用了tensorflow的从文件直接读取数据的方式,逻辑流程如下, 实现如下, # Author : Hellcat # Time : 2017/12/9 import os ...
- PRML读书笔记——线性回归模型(上)
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. ...
- The Way to Go读书笔记_第4章_基本结构和基本数据类型
“_”标识符 _ 本身就是一个特殊的标识符,被称为空白标识符.它可以像其他标识符那样用于变量的声明或赋值(任何类型都可以赋值给它),但任何赋给这个标识符的值都将被抛弃,因此这些值不能在后续的代码中使用 ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...
随机推荐
- 如何在一台机器上部署多个tomcat
1,在/usr/local/下部署两个tomcat7. 2,修改/etc/profile文件,加入下面内容 vi /etc/profile export JAVA_HOME=/usr/java/jd ...
- 讲解Linux数据库安装
学习了linux这门课之后,就开始实践过程了,这样比较记得牢固,学以致用. 有了基本的命令,就可以试着安装数据库了. 企业环境 需要安装VMWare ESXi虚拟机,然后再在里面新建虚拟机. 镜像vm ...
- PAT A1106 Lowest Price in Supply Chain (25 分)——树的bfs遍历
A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyone invo ...
- Photoshop 基础五 橡皮擦工具
橡皮擦工具,对图层消除 背景色橡皮擦工具,对图层,消除背景色 魔棒橡皮擦工具,对图层,颜色相近的消除
- ubuntu install pip
ubuntu 安装pip sudo apt-get update sudo apt-get upgrade sudo apt-get install python-pip
- (转)60s快速分析Linux性能
之前在地铁上看到过一篇快速分析Linux系统性能的文章,觉得以后有用,今天就找了一下,转载过来. 原文出处:http://techblog.netflix.com/2015/11/linux-perf ...
- linux中yum与rpm区别
一.源代码形式 1. 绝大多数开源软件都是直接以原码形式发布的 2. 源代码一般会被打成.tar.gz的归档压缩文件 3. 源代码需要编译成为二进制形式之后才能够运行使用 ...
- 3.5《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)—第三章小结
本章使用的重要命令总结在Table 5中 命令 描述 示例 curl 与URL交互 $ curl -O example.com which 指出程序的在计算机的路径 $ echo bar >&g ...
- Java 面试题 队列
Queue: 基本上,一个队列就是一个先入先出(FIFO)的数据结构 Queue接口与List.Set同一级别,都是继承了Collection接口.LinkedList实现了Deque接 口. Q ...
- 一头雾水的"Follow The Pointer"
原文:一头雾水的"Follow The Pointer" 一头雾水的"Follow The Pointer" ...