编译 TensorFlow 的 C/C++ 接口
TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口。
安装环境:
Ubuntu 16.04
Python 3.5
CUDA 9.0
cuDNN 7
Bazel 0.17.2
TensorFlow 1.11.0
1. 安装 Bazel
安装 JDK
sudo apt-get install openjdk-8-jdk
添加 Bazel 软件源
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
安装并更新 Bazel
sudo apt-get update && sudo apt-get install bazel
2. 编译 TensorFlow 库
进入源码根目录,运行
./configure
进行配置。可参考 官网 -> Build from source -> View sample configuration session 设置,主要是 Python 的路径、CUDA 和 CUDNN 的版本和路径以及显卡的计算能力 可点此查看 。以下是我的配置过程,仅供参考。
You have bazel 0.17.2 installed.
Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3.5
Found possible Python library paths:
/usr/local/lib/python3.5/dist-packages
/usr/lib/python3/dist-packages
Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages]
Do you wish to build TensorFlow with Apache Ignite support? [Y/n]: n
No Apache Ignite support will be enabled for TensorFlow.
Do you wish to build TensorFlow with XLA JIT support? [Y/n]: n
No XLA JIT support will be enabled for TensorFlow.
Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: n
No OpenCL SYCL support will be enabled for TensorFlow.
Do you wish to build TensorFlow with ROCm support? [y/N]: n
No ROCm support will be enabled for TensorFlow.
Do you wish to build TensorFlow with CUDA support? [y/N]: y
CUDA support will be enabled for TensorFlow.
Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 9.0]:
Please specify the location where CUDA 9.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]:
Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Do you wish to build TensorFlow with TensorRT support? [y/N]: n
No TensorRT support will be enabled for TensorFlow.
Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]:
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1]:
Do you want to use clang as CUDA compiler? [y/N]: n
nvcc will be used as CUDA compiler.
Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]:
Do you wish to build TensorFlow with MPI support? [y/N]: n
No MPI support will be enabled for TensorFlow.
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]:
Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
Not configuring the WORKSPACE for Android builds.
Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
--config=mkl # Build with MKL support.
--config=monolithic # Config for mostly static monolithic build.
--config=gdr # Build with GDR support.
--config=verbs # Build with libverbs support.
--config=ngraph # Build with Intel nGraph support.
Configuration finished
- 进入 tensorflow 目录进行编译,编译成功后,在 /bazel-bin/tensorflow 目录下会出现 libtensorflow_cc.so 文件
C版本: bazel build :libtensorflow.so
C++版本: bazel build :libtensorflow_cc.so
3. 编译其他依赖
进入 tensorflow/contrib/makefile 目录下,运行
./build_all_linux.sh
,成功后会出现一个gen文件夹若出现如下错误 /autogen.sh: 4: autoreconf: not found ,安装相应依赖即可
sudo apt-get install autoconf automake libtool
4. 测试
- Cmaklist.txt
cmake_minimum_required(VERSION 3.8)
project(Tensorflow_test)
set(CMAKE_CXX_STANDARD 11)
set(SOURCE_FILES main.cpp)
include_directories(
/media/lab/data/yongsen/tensorflow-master
/media/lab/data/yongsen/tensorflow-master/tensorflow/bazel-genfiles
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/protobuf/include
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/host_obj
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/proto
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/nsync/public
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/eigen
/media/lab/data/yongsen/tensorflow-master/bazel-out/local_linux-py3-opt/genfiles
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/absl
)
add_executable(Tensorflow_test ${SOURCE_FILES})
target_link_libraries(Tensorflow_test
/media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_cc.so
/media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_framework.so
)
- 创建回话
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream>
using namespace std;
using namespace tensorflow;
int main()
{
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
cout << status.ToString() << "\n";
return 1;
}
cout << "Session successfully created.\n";
return 0;
}
- 查看 TensorFlow 版本
#include <iostream>
#include <tensorflow/c/c_api.h>
int main() {
std:: cout << "Hello from TensorFlow C library version" << TF_Version();
return 0;
}
// Hello from TensorFlow C library version1.11.0-rc1
- 若提示缺少某些头文件则在 tensorflow 根目录下搜索具体路径,然后添加到 Cmakelist 里面即可。
获取更多精彩,请关注「seniusen」!
编译 TensorFlow 的 C/C++ 接口的更多相关文章
- Ubuntu16.04编译tensorflow的C++接口
原文:https://www.bearoom.xyz/2018/09/27/ubuntu1604buildtf4cpp/ 之前有一篇介绍到在windows下利用VS2015编译tensorflow的C ...
- ubuntu14 编译tensorflow C++ 接口
tensorflow1.11 bazel 0.15.2 protobuf 3.6.0 eigen 3.3.5 wget -t 0 -c https://github.com/eigenteam/eig ...
- 编译TensorFlow源码
编译TensorFlow源码 参考: https://www.tensorflow.org/install/install_sources https://github.com/tensorflo ...
- 在Windows*上编译Tensorflow教程
背景介绍 最简单的 Tensorflow 的安装方法是在 pip 一键式安装官方预编译好的包 pip install tensorflow 通常这种预编译的包的编译参数选择是为了最大兼容性而不是为了最 ...
- 编译TensorFlow CPU指令集优化版
编译TensorFlow CPU指令集优化版 如题,CPU指令集优化版,说的是针对某种特定的CPU型号进行过优化的版本.通常官方给的版本是没有针对特定CPU进行过优化的,有网友称,优化过的版本相比优化 ...
- CentOS 6 编译 TensorFlow for Java 以及 Maven Pom
我们的系统环境 CentOS 6.5, JDK 1.8 更新yum源 $ yum update 安装 Python 2.7 $ yum install python27 python27-numpy ...
- YOLOv4: Darknet 如何于 Ubuntu 编译,及使用 Python 接口
本文将介绍 YOLOv4 官方 Darknet 实现,如何于 Ubuntu 18.04 编译,及使用 Python 接口. 主要内容有: 准备基础环境: Nvidia Driver, CUDA, cu ...
- win10编译tensorflow C++接口
原文地址:https://www.bearoom.xyz/2018/08/28/win10-build-tf-cc/ 首先,我觉得这是一个比较DT的活,因为,tensorflow支持最好的编程语言应 ...
- caffe 在window下编译(windows7, cuda8.0,matlab接口编译)
1. 环境:Windows7,Cuda8.0,显卡GTX1080,Matlab2016a,VS2013 (ps:老板说服务器要装windows系统,没办法,又要折腾一番,在VS下编译好像在cuda8. ...
随机推荐
- 总结的MR中连接操作
1 reduce side join在map端加上标记, 在reduce容器保存,然后作笛卡尔积缺点: 有可能oom 2 map side join 2.1 利用内存和分布式缓存,也有oom风险 2 ...
- python 并发编程之协程
一.协程 协程: 单线程下的并发,又称 微线程.协程是一种用户态的的轻量级线程,即协程是由用户程序自己控制调度的. 协程的本质就是在单线程下,由用户自己控制一个任务,遇到 io 阻塞就切换另外一个 ...
- Python 学习笔记(七)Python字符串(四)
输入输出 输入函数 raw_input (Python3:input) >>> raw_input("请输入一个字母") #获取输入内容的一个函数 请输入一个字母 ...
- 微信小程序腾讯云配置Tomcat https端口
在个人开发微信小程序时,发布之前要配置微信小程序的域名https及域名的SSL证书的申请及安装 我用的是腾讯云,SSL证书申请好之后,点击下载,解压文件夹,会有如图,根据你要配置的服务器是哪种,我是t ...
- Java项目中的下载 与 上传
使用超级链接下载,一般会在浏览器中直接打开,而不是出现下载框 如果要确保出现下载框下载文件,则需要设置response中的参数: 1是要设置用附件的方式下载 Content-Disposition: ...
- cornerstone提示“SQLite-database disk image is malformed”
当点击workingCopy时错误如下 google了一下,有是有解决的办法,可是这些都是直接使用sqlite时产生的问题. sqlite错误 The database disk image is m ...
- Flask-SQLAlchemy安装及设置
Flask-SQLAlchemy安装及设置 SQLALchemy 实际上是对数据库的抽象,让开发者不用直接和 SQL 语句打交道,而是通过 Python 对象来操作数据库,在舍弃一些性能开销的同时,换 ...
- js文件处理File
支持File API的浏览器有IE10+,Firefox3.5+,Opera10.6+,Safari5+,Chrome. 1.在表单元素上<input type="fiel" ...
- css实现下拉菜单功能(多中实现方式即原理)
引导思路: 1.需要用到的元素:position hover (z-index) 或(overflow)或(display)等等. 关键点就是div的溢出部分的处理. 2.实现过程: 2.1:就是要 ...
- 【windows中常用的服务概览和总结】
#IIS 1)ftp 功能:1-1)FTP地址限制: 1-2)SSL加密: 1-3)目录浏览(虚拟目录): 1-4)身份验证:(基本,匿名): 1-5)授权规则: 1-6)用户隔离:用户名目录隔离:1 ...