TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口。

安装环境:

Ubuntu 16.04

Python 3.5

CUDA 9.0

cuDNN 7

Bazel 0.17.2

TensorFlow 1.11.0

1. 安装 Bazel

  • 安装 JDK sudo apt-get install openjdk-8-jdk

  • 添加 Bazel 软件源

echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -

2. 编译 TensorFlow 库

You have bazel 0.17.2 installed.
Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3.5 Found possible Python library paths:
/usr/local/lib/python3.5/dist-packages
/usr/lib/python3/dist-packages
Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with Apache Ignite support? [Y/n]: n
No Apache Ignite support will be enabled for TensorFlow. Do you wish to build TensorFlow with XLA JIT support? [Y/n]: n
No XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: n
No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: n
No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y
CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 9.0]: Please specify the location where CUDA 9.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: Do you wish to build TensorFlow with TensorRT support? [y/N]: n
No TensorRT support will be enabled for TensorFlow. Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1]: Do you want to use clang as CUDA compiler? [y/N]: n
nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: n
No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
--config=mkl # Build with MKL support.
--config=monolithic # Config for mostly static monolithic build.
--config=gdr # Build with GDR support.
--config=verbs # Build with libverbs support.
--config=ngraph # Build with Intel nGraph support.
Configuration finished
  • 进入 tensorflow 目录进行编译,编译成功后,在 /bazel-bin/tensorflow 目录下会出现 libtensorflow_cc.so 文件
C版本: bazel build :libtensorflow.so
C++版本: bazel build :libtensorflow_cc.so

3. 编译其他依赖

  • 进入 tensorflow/contrib/makefile 目录下,运行./build_all_linux.sh,成功后会出现一个gen文件夹

  • 若出现如下错误 /autogen.sh: 4: autoreconf: not found ,安装相应依赖即可 sudo apt-get install autoconf automake libtool

4. 测试

  • Cmaklist.txt
cmake_minimum_required(VERSION 3.8)
project(Tensorflow_test) set(CMAKE_CXX_STANDARD 11) set(SOURCE_FILES main.cpp) include_directories(
/media/lab/data/yongsen/tensorflow-master
/media/lab/data/yongsen/tensorflow-master/tensorflow/bazel-genfiles
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/protobuf/include
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/host_obj
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/proto
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/nsync/public
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/eigen
/media/lab/data/yongsen/tensorflow-master/bazel-out/local_linux-py3-opt/genfiles
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/absl
) add_executable(Tensorflow_test ${SOURCE_FILES}) target_link_libraries(Tensorflow_test
/media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_cc.so
/media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_framework.so
)
  • 创建回话
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream> using namespace std;
using namespace tensorflow; int main()
{
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
cout << status.ToString() << "\n";
return 1;
}
cout << "Session successfully created.\n";
return 0;
}
  • 查看 TensorFlow 版本
#include <iostream>
#include <tensorflow/c/c_api.h> int main() {
std:: cout << "Hello from TensorFlow C library version" << TF_Version();
return 0;
} // Hello from TensorFlow C library version1.11.0-rc1
  • 若提示缺少某些头文件则在 tensorflow 根目录下搜索具体路径,然后添加到 Cmakelist 里面即可。

获取更多精彩,请关注「seniusen」!

编译 TensorFlow 的 C/C++ 接口的更多相关文章

  1. Ubuntu16.04编译tensorflow的C++接口

    原文:https://www.bearoom.xyz/2018/09/27/ubuntu1604buildtf4cpp/ 之前有一篇介绍到在windows下利用VS2015编译tensorflow的C ...

  2. ubuntu14 编译tensorflow C++ 接口

    tensorflow1.11 bazel 0.15.2 protobuf 3.6.0 eigen 3.3.5 wget -t 0 -c https://github.com/eigenteam/eig ...

  3. 编译TensorFlow源码

      编译TensorFlow源码 参考: https://www.tensorflow.org/install/install_sources https://github.com/tensorflo ...

  4. 在Windows*上编译Tensorflow教程

    背景介绍 最简单的 Tensorflow 的安装方法是在 pip 一键式安装官方预编译好的包 pip install tensorflow 通常这种预编译的包的编译参数选择是为了最大兼容性而不是为了最 ...

  5. 编译TensorFlow CPU指令集优化版

    编译TensorFlow CPU指令集优化版 如题,CPU指令集优化版,说的是针对某种特定的CPU型号进行过优化的版本.通常官方给的版本是没有针对特定CPU进行过优化的,有网友称,优化过的版本相比优化 ...

  6. CentOS 6 编译 TensorFlow for Java 以及 Maven Pom

    我们的系统环境 CentOS 6.5, JDK 1.8 更新yum源 $ yum update 安装 Python 2.7 $ yum install python27 python27-numpy ...

  7. YOLOv4: Darknet 如何于 Ubuntu 编译,及使用 Python 接口

    本文将介绍 YOLOv4 官方 Darknet 实现,如何于 Ubuntu 18.04 编译,及使用 Python 接口. 主要内容有: 准备基础环境: Nvidia Driver, CUDA, cu ...

  8. win10编译tensorflow C++接口

    ​原文地址:https://www.bearoom.xyz/2018/08/28/win10-build-tf-cc/ 首先,我觉得这是一个比较DT的活,因为,tensorflow支持最好的编程语言应 ...

  9. caffe 在window下编译(windows7, cuda8.0,matlab接口编译)

    1. 环境:Windows7,Cuda8.0,显卡GTX1080,Matlab2016a,VS2013 (ps:老板说服务器要装windows系统,没办法,又要折腾一番,在VS下编译好像在cuda8. ...

随机推荐

  1. 访问oracle数据库

    如果是本地 :sqlplus system/xxx(用户名/密码) 远程到服务器, sqlplus system/xxx(用户名/密码) @IP:port/orcl(orcl为数据库实例)

  2. SQL里的concat() 以及group_concat() 函数的使用

    实例参考:https://blog.csdn.net/mary19920410/article/details/76545053 一 concat()函数 1.功能:将多个字符串连接成一个字符串. 2 ...

  3. c#解析分析SQL语句

    最近总结了c#一般的功能,然后自己在博文中写了很多东西.主要是在用途上面.能够解决一些问题.现在分各个组件和方向写完了.主要的内容写了demo,也写了自己的项目组件和模型. 最后一个SQL分析.其实在 ...

  4. 规避Javascript多人开发函数和变量重名问题

    函数和变量重名始终是一个令人头痛的问题,先讲变量吧,相信了解JS的朋友都知道,在JS中 是没有块级作用域的只有函数作用域,也就是说那些以大括号为界定符的代码块是管不住其中定义 的变量的作用域的,举例: ...

  5. 肝题与oj

    oier很多,oj也很多,这些oj分别有怎样的特点,我们又该怎样选择呢?请各位客官听在下分解 (我主要说一些比较大众的oj) (注意:难度与界面友好度为个人意见,不喜勿喷) 1.入门级 1.NOIop ...

  6. 【2018 CCPC网络赛 1004】Find Integer(勾股数+费马大定理)

    Problem Description people in USSS love math very much, and there is a famous math problem . give yo ...

  7. 解决ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)【亲测有效】

    文件转自:https://blog.csdn.net/hua1011161696/article/details/80666025 问题:(MySQL 5.6社区版windows版) 忘记密码或其他一 ...

  8. SpringBoot配置全局自定义异常

    不同于传统集中时Springmvc 全局异常,具体查看前面的章节https://www.cnblogs.com/zwdx/p/8963311.html 对于springboot框架来讲,这里我就介绍一 ...

  9. 老刘的Linux小课堂开课了

    经过几个月的等待,刘遄老师的LINUX课堂终于开课了,从现在开始,我会在博客里将每一堂课的笔记记录下来,记录自己的每一步成长. 由于是第一次开课,老刘只是简单的介绍了LINUX相关的一些概念,比如开源 ...

  10. Shell 脚本进程并发&进程数控制

    Shell 都以串行的方式自上而下执行命令,不适用需要大量作业的场景. 学习此篇shell脚本进程并发,能够大大提高工作效率~ 通过wait 和 & 后台符号 可以实现并行,但无法控制进程数. ...