TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口。

安装环境:

Ubuntu 16.04

Python 3.5

CUDA 9.0

cuDNN 7

Bazel 0.17.2

TensorFlow 1.11.0

1. 安装 Bazel

  • 安装 JDK sudo apt-get install openjdk-8-jdk

  • 添加 Bazel 软件源

echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -

2. 编译 TensorFlow 库

You have bazel 0.17.2 installed.
Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3.5 Found possible Python library paths:
/usr/local/lib/python3.5/dist-packages
/usr/lib/python3/dist-packages
Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with Apache Ignite support? [Y/n]: n
No Apache Ignite support will be enabled for TensorFlow. Do you wish to build TensorFlow with XLA JIT support? [Y/n]: n
No XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: n
No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: n
No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y
CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 9.0]: Please specify the location where CUDA 9.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: Do you wish to build TensorFlow with TensorRT support? [y/N]: n
No TensorRT support will be enabled for TensorFlow. Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1]: Do you want to use clang as CUDA compiler? [y/N]: n
nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: n
No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
--config=mkl # Build with MKL support.
--config=monolithic # Config for mostly static monolithic build.
--config=gdr # Build with GDR support.
--config=verbs # Build with libverbs support.
--config=ngraph # Build with Intel nGraph support.
Configuration finished
  • 进入 tensorflow 目录进行编译,编译成功后,在 /bazel-bin/tensorflow 目录下会出现 libtensorflow_cc.so 文件
C版本: bazel build :libtensorflow.so
C++版本: bazel build :libtensorflow_cc.so

3. 编译其他依赖

  • 进入 tensorflow/contrib/makefile 目录下,运行./build_all_linux.sh,成功后会出现一个gen文件夹

  • 若出现如下错误 /autogen.sh: 4: autoreconf: not found ,安装相应依赖即可 sudo apt-get install autoconf automake libtool

4. 测试

  • Cmaklist.txt
cmake_minimum_required(VERSION 3.8)
project(Tensorflow_test) set(CMAKE_CXX_STANDARD 11) set(SOURCE_FILES main.cpp) include_directories(
/media/lab/data/yongsen/tensorflow-master
/media/lab/data/yongsen/tensorflow-master/tensorflow/bazel-genfiles
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/protobuf/include
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/host_obj
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/proto
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/nsync/public
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/eigen
/media/lab/data/yongsen/tensorflow-master/bazel-out/local_linux-py3-opt/genfiles
/media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/absl
) add_executable(Tensorflow_test ${SOURCE_FILES}) target_link_libraries(Tensorflow_test
/media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_cc.so
/media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_framework.so
)
  • 创建回话
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream> using namespace std;
using namespace tensorflow; int main()
{
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
cout << status.ToString() << "\n";
return 1;
}
cout << "Session successfully created.\n";
return 0;
}
  • 查看 TensorFlow 版本
#include <iostream>
#include <tensorflow/c/c_api.h> int main() {
std:: cout << "Hello from TensorFlow C library version" << TF_Version();
return 0;
} // Hello from TensorFlow C library version1.11.0-rc1
  • 若提示缺少某些头文件则在 tensorflow 根目录下搜索具体路径,然后添加到 Cmakelist 里面即可。

获取更多精彩,请关注「seniusen」!

编译 TensorFlow 的 C/C++ 接口的更多相关文章

  1. Ubuntu16.04编译tensorflow的C++接口

    原文:https://www.bearoom.xyz/2018/09/27/ubuntu1604buildtf4cpp/ 之前有一篇介绍到在windows下利用VS2015编译tensorflow的C ...

  2. ubuntu14 编译tensorflow C++ 接口

    tensorflow1.11 bazel 0.15.2 protobuf 3.6.0 eigen 3.3.5 wget -t 0 -c https://github.com/eigenteam/eig ...

  3. 编译TensorFlow源码

      编译TensorFlow源码 参考: https://www.tensorflow.org/install/install_sources https://github.com/tensorflo ...

  4. 在Windows*上编译Tensorflow教程

    背景介绍 最简单的 Tensorflow 的安装方法是在 pip 一键式安装官方预编译好的包 pip install tensorflow 通常这种预编译的包的编译参数选择是为了最大兼容性而不是为了最 ...

  5. 编译TensorFlow CPU指令集优化版

    编译TensorFlow CPU指令集优化版 如题,CPU指令集优化版,说的是针对某种特定的CPU型号进行过优化的版本.通常官方给的版本是没有针对特定CPU进行过优化的,有网友称,优化过的版本相比优化 ...

  6. CentOS 6 编译 TensorFlow for Java 以及 Maven Pom

    我们的系统环境 CentOS 6.5, JDK 1.8 更新yum源 $ yum update 安装 Python 2.7 $ yum install python27 python27-numpy ...

  7. YOLOv4: Darknet 如何于 Ubuntu 编译,及使用 Python 接口

    本文将介绍 YOLOv4 官方 Darknet 实现,如何于 Ubuntu 18.04 编译,及使用 Python 接口. 主要内容有: 准备基础环境: Nvidia Driver, CUDA, cu ...

  8. win10编译tensorflow C++接口

    ​原文地址:https://www.bearoom.xyz/2018/08/28/win10-build-tf-cc/ 首先,我觉得这是一个比较DT的活,因为,tensorflow支持最好的编程语言应 ...

  9. caffe 在window下编译(windows7, cuda8.0,matlab接口编译)

    1. 环境:Windows7,Cuda8.0,显卡GTX1080,Matlab2016a,VS2013 (ps:老板说服务器要装windows系统,没办法,又要折腾一番,在VS下编译好像在cuda8. ...

随机推荐

  1. ActiveX控件注册不起作用的解决办法

    公司写了一个ActiveX打印插件.其中一个同事的电脑死活不能用.于是我就上网找办法 这位兄弟写的比较清晰. ActiveX交互时浏览器的设置以及ActiveX控件注册的检测 http://blog. ...

  2. 火狐 SSL 收到了一个弱临时 Diffie-Hellman 密钥

    火狐 SSL 收到了一个弱临时 Diffie-Hellman 密钥   最近在用FireFox 调试时使用Https,连接 https网址 时发生错误. 在服务器密钥交换握手信息中 SSL 收到了一个 ...

  3. GoBelieve IOS SDK接入备忘

    项目配置 在工程target的"Build Settings"中,找到"Linking"的"Other Linker Flags",添加参数 ...

  4. Swift_控制流

    Swift_控制流 点击查看源码 for-in 循环 //for-in 循环 fileprivate func testForIn() { //直接循环提取内部数据 //[1,5] for index ...

  5. c# 分析SQL语句中的表操作

    最近写了很多方向的总结和demo.基本包含了工作中的很多方面,毕竟c#已经高度封装并且提供了很多类库.前面已经总结了博文.最近2天突然感觉前面的SQL分析阻组件的确麻烦,也注意看了下.为了方便大家学习 ...

  6. LCA最近公共祖先——Tarjan模板

    LCA(Lowest Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. Tarjan是一种离线算法,时间复杂度O(n+Q),Q表示询问次数,其中 ...

  7. CVE-2018-1111漏洞复现-环境搭建与dhcp命令注入

    0×01 前言 2018年5月,在Red Hat Enterprise Linux多个版本的DHCP客户端软件包所包含的NetworkManager集成脚本中发现了命令注入漏洞(CVE-2018-11 ...

  8. HTML5—— 你肯定会用到的新知识

    HTML5 简介 语义化标签 新增结构标签 表单 多媒体 HTML5 简介 XML是更加严格的语言 是HTML和XHTML的结合 语义化标签 新增的语义化标签 header nav section a ...

  9. 【shell脚本学习-4】

    文本处理 #!/bin/bash#----------文本处理---------- #---------------echo----------------- # "-n":处理光 ...

  10. js判断是否为数字

    function isNumber(value) { var patrn = /^(-)?\d+(\.\d+)?$/; if (patrn.exec(value) == null || value = ...