论文:https://github.com/ei1994/my_reference_library/tree/master/papers

  本文的贡献点如下:

  1. 提出了一个新的利用深度网络架构基于patch的匹配来明显的改善了效果;

  2. 利用更少的描述符,得到了比state-of-the-art更好的结果;

  3. 实验研究了该系统的各个成分的有效作用,表明,MatchNet改善了手工设计 和 学习到的描述符加上对比函数;

  4. 最后,作者 release 了训练的 MatchNet模型。

  网络框架:

  主要有如下几个成分:

  A:Feature Network.

  主要用于提取输入patch的特征,主要根据AlexNet改变而来,有些许变化。主要的卷积和pool层的两段分别有 preprocess layer 和 bottleneck layer,各自起到归一化数据和降维,防止过拟合的作用。激活函数:ReLU.

  B:Metric Network.

  主要用于feature Comparison,3层fc 加上 softmax,输出得到图像块相似度概率。

  C:Two-tower structure with tied parameters

  在训练阶段,特征网络用作“双塔”,共享参数。双塔的输出串联在一起作为度量网络的输入。The entire network is trained on labeled patch-pairs generated from the sampler to minimize the cross-entropy loss. 在预测的时候,这两个子网络A 和 B 方便的用在 two-stage pipeline. 如下图所示:

  D:The bottleneck layer

  用来减少特征表示向量的维度,尽量避免过拟合。在特征提取网络和全连接层之间,控制输入到全连接层的特征向量的维度。

  E:The preprocessing layer

  输入图像块预处理,归一化到(-1,1)之间。

  MatchNet 的具体参数如下表所示,注意Bottleneck 和 FC 中参数的选择。

  训练和预测:

  交叉熵损失,SGD优化,由于数据正负样本的不平衡性,会导致实验精度的降低,本文采用采样的训练方法,在一个batchsize中,选择一半正样本,一半负样本进行训练。

  特征网络和度量网络是联合训练的,使用交叉熵损失函数。在测试阶段,可以分开进行,先将图像块经过特征提取网络得到特征编码并保存,然后组合这些特征,输入到度量网络中得到N1*N2的得分矩阵。

  总结:

  1、MatchNet网络就是 siamese的双分支权重共享网络,与论文Learning to Compare Image Patches via Convolutional Neural Networks有共通之处。CNN提取图像块特征,FC学习度量特征的相似度。

  2、本文指出,在测试阶段,可以将特征网络和度量网络分开进行,避免匹配图像时特征提取的重复计算。首先得到图像块的特征编码保存,之后输入度量网络中,计算得到N1*N2的得分矩阵。

参考文献:

https://www.cnblogs.com/wangxiaocvpr/p/5515181.html

论文笔记 — MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching的更多相关文章

  1. 论文笔记之:MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching CVPR  2015 本来都写到一半了,突然笔记本死机了 ...

  2. 配置和运行 MatchNet CVPR 2015 MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    配置和运行 MatchNet CVPR 2015 GitHub: https://github.com/hanxf/matchnet 最近一个同学在配置,测试这个网络,但是总是遇到各种问题. 我也尝试 ...

  3. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  4. 论文笔记:Rich feature hierarchies for accurate object detection and semantic segmentation

    在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程 ...

  5. 【论文笔记】多任务学习(Multi-Task Learning)

    1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法.在机器学习领域,标准的算法理论是一次学习一个任务,也就 ...

  6. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

  7. 论文笔记:A Review on Deep Learning Techniques Applied to Semantic Segmentation

    A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Intr ...

  8. (论文笔记Arxiv2021)Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis

    目录 摘要 1.引言 2.相关工作 3.方法 3.1局部特征聚合的再思考 3.2 曲线分组 3.3 曲线聚合和CurveNet 4.实验 4.1 应用细节 4.2 基准 4.3 消融研究 5.总结 W ...

  9. 论文笔记 Spatial contrasting for deep unsupervised learning

    在我们设计无监督学习模型时,应尽量做到 网络结构与有监督模型兼容 有效利用有监督模型的基本模块,如dropout.relu等 无监督学习的目标是为有监督模型提供初始化的参数,理想情况是"这些 ...

随机推荐

  1. unity坑faq

    遇到的坑记录下来,大都都是听说,没有实测 1. Graphics.copyTexture,在某些机型上不支持从不同类型拷贝 2. msaa 小米mix2不支持,晓龙845 3. android4.2下 ...

  2. fecha的使用

    项目中时间的处理是无法避免的,时间的处理方式有很多,这里介绍一下fecha的使用 fecha是一个日期格式化和解析的js库,它提供了强大的日期处理功能,功能强大且只有2k大小.安装方式简单,只需要 n ...

  3. MySql 自适应哈希索引

    一.介绍 哈希(hash)是一种非常快的查找方法,一般情况下查找的时间复杂度为O(1).常用于连接(join)操作,如Oracle中的哈希连接(hash join). InnoDB存储引擎会监控对表上 ...

  4. 关于SIM800C MINI V4.0 V4版本 5v供电模块重启问题

    现象描述 模块不停重启,发送AT时候能看到,不停的回复Call Ready 或者SIM卡确认没问题,但是NET指示灯一直不能进入3秒闪烁的状态. 1.内核要求 SIM800C内核要求需要电源有瞬间有2 ...

  5. PyQt4设置窗口左上角的小图标

    # -*- coding: utf-8 -*- """ ------------------------------------------------- File Na ...

  6. 对称加密&非对称加密

    对称密钥密码算法的特点: 算法简单,加/解密速度快,但密钥管理复杂,不便于数字签名: 非对称密钥密码算法的特点: 算法复杂,加/解密速度慢,密钥管理简单,可用于数字签名. 所以将两者结合起来,形成混合 ...

  7. [不常用] - CSRF(跨站点请求伪造)

    CSRF,Cross Site Request Forgery,即跨站点请求伪造.   这种攻击是指,在用户正常登录系统以后,攻击者诱使用户访问一些非法链接,以执行一些非法操作. 比如:如果删除用户操 ...

  8. win10 chrome 调试

      下载NPAPI版本的flash player: http://www.adobe.com/support/flashplayer/debug_downloads.html#fp13       禁 ...

  9. js文件操作

    IE下 1. 写入 FileSystemObject可以将文件翻译成文件流. 第一步: 例: 复制代码代码如下: Var fso=new ActiveXObject(Scripting.FileSys ...

  10. api响应类

    接口开发响应类封装 class response{ /* * 封通信接口数据 * @param integer $code 状态码 * @param string $message 状态信息 * @p ...