乘法逆元

题目链接

求逆元的三种方式:

1.扩欧

i*x≡1 (mod p)

可以化为:x*i+y*p=1

exgcd求x即可

inline void exgcd(int a,int b,int &x,int &y){
if(b==){
x=; y=;
return;
}
exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-(a/b)*y;
}

2.快速幂

费马小定理:a^(p-1) ≡ 1 (mod p)

a*a^(p-2)≡1(mod p)

x=a^(p-2) 即为逆元

inline int qpow(int x,int k){
int s=;
while(k){
if(k&) s=s*x%p;
k>>=;
x=x*x%p;
}
return s;
}

3.线性递推:

inv[i]=(M-M/i)*inv[M%i]%M;

证明:
设t=M/i,k=M mod i
t*i+k≡0(mod M)
t*i≡-k(mod M)
两边同时乘以k和i的逆元:t*inv[k]≡-inv[i](mod M)
inv[i]≡-t*inv[k](mod M)
将t和k用M和i表示:
inv[i]≡(-M/i)*inv[M mod i](mod M)
 
inv[]=;for(int i=;i<=n;i++)
inv[i]=(p-p/i)*inv[p%i]%p;

【洛谷P3811】[模板]乘法逆元的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. [洛谷P3811]【模板】乘法逆元

    P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...

  3. 模板【洛谷P3811】 【模板】乘法逆元

    P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...

  4. 洛谷 P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...

  5. 洛谷——P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...

  6. 洛谷—— P3811 【模板】乘法逆元

    https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...

  7. 乘法逆元-洛谷-P3811

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

  8. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  9. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

随机推荐

  1. (转) Linux Shell经典实例解析

    原文:http://blog.csdn.net/yonggeit/article/details/72779955 该篇博客作为对之前Linux Shell常用技巧和高级技巧系列博客的总结,将以Ora ...

  2. oem的使用

    1 浏览器输入下面的网址: 虚拟机[安装orcale的机器]:http://localhost:1158/em/ 本机:http://192.168.47.10:1158/em/ 192.168.47 ...

  3. java Folder transform to Source Folder

    右键文件夹然后选择Build Path ===>Use as Source Folder 里面的东西现在就可以编译了 然后想要让一个源码包变成一个文件夹的话: 只需要再次右键源码包==>选 ...

  4. unity烘焙记录

    1.Unity Android 阴影不显示.阴影显示不正确 解决 http://blog.csdn.net/xuetao0605/article/details/50626181 2.阴影强度问题 不 ...

  5. linux_api之进程环境(二)

      本篇索引: 1.引言 2.终端登录 3.进程组 4.会话期 1.引言 通过上一篇的学习,我们已经知道了如何控制一个进程,fork函数从父进程中复制出子进程,我们可以通过exec函数让子进程运行新的 ...

  6. npm是什么NPM的全称是Node Package Manager

    npm是什么NPM的全称是Node Package Manager

  7. SQL Exists 的用法 转载

    比如在Northwind数据库中     有一个查询为 SELECT c.CustomerId, CompanyName FROM Customers c WHERE EXISTS( SELECT O ...

  8. mvc 中Request[""]与Request.QueryString[""]

    1.Request[""]与Request.QueryString[""]获取不到值时返回null: 2.Request[""]与Reque ...

  9. PAT 1056 Mice and Rice

    #include <cstdio> #include <climits> #include <cstdlib> #include <vector> #i ...

  10. HTML 提高页面加载速度的方法

    (1)减少 HTTP 的请求.(合并资源文件 和 使用图片精灵 : (2)把CSS  放头部,把 JavaScript 放到 body 标签尾部: (3)定义图片的宽和高: (4)定义字符集: (5) ...