DFP

该算法的核心是:通过迭代的方法,对Hk+1(-1)近似。迭代方式:

其中D0通常取为单位矩阵,关键是每一步构造矫正矩阵△Dk

考虑△Dk 的待定形式为

拟牛顿的条件

这里插播一下拟牛顿的条件。

前面有讲到,拟牛顿法是想找到一个近似矩阵D来近似海森矩阵H的逆。显然D的选择是必须有条件的。为了表示清楚,下文B≈H,D≈H-1

设经过k+1次迭代后得到Xk+1,此时将目标函数在Xk+1附近作泰勒展开,取二阶近似,得到

对其两边作用一个梯度算子▽,可得

在上式中取X=Xk,并整理得到

若引入记号

则有

或者

这就是所谓的拟牛顿条件对于我们的近似矩阵B或D则有

有了这个拟牛顿条件我们就能开始构造D了

构造矩阵D

结合两式:

则有

并且可以写成

由于是两个数,且里面α和β在里面起到类似放缩的作用,不妨假设

其中u,v仍是待定的

可以得到

不妨直接取

则有

至此则有

注:这里的(1.13)公式为

这里gk表示一阶导。

待更新!!


转自http://blog.csdn.net/itplus

拟牛顿法——DFP、BFGS、L-BFGS的更多相关文章

  1. 牛顿法与拟牛顿法,DFP法,BFGS法,L-BFGS法

    牛顿法 考虑如下无约束极小化问题: $$\min_{x} f(x)$$ 其中$x\in R^N$,并且假设$f(x)$为凸函数,二阶可微.当前点记为$x_k$,最优点记为$x^*$. 梯度下降法用的是 ...

  2. 牛顿法|阻尼牛顿法|拟牛顿法|DFP算法|BFGS算法|L-BFGS算法

    一直记不住这些算法的推导,所以打算详细点写到博客中以后不记得就翻阅自己的笔记. 泰勒展开式 最初的泰勒展开式,若  在包含  的某开区间(a,b)内具有直到n+1阶的导数,则当x∈(a,b)时,有: ...

  3. 牛顿法/拟牛顿法/DFP/BFGS/L-BFGS算法

    在<统计学习方法>这本书中,附录部分介绍了牛顿法在解决无约束优化问题中的应用和发展,强烈推荐一个优秀博客. https://blog.csdn.net/itplus/article/det ...

  4. 拟牛顿法/Quasi-Newton,DFP算法/Davidon-Fletcher-Powell,及BFGS算法/Broyden-Fletcher-Goldfarb-Shanno

    拟牛顿法/Quasi-Newton,DFP算法/Davidon-Fletcher-Powell,及BFGS算法/Broyden-Fletcher-Goldfarb-Shanno 转载须注明出处:htt ...

  5. 最优化算法【牛顿法、拟牛顿法、BFGS算法】

    一.牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\ ...

  6. 牛顿法与拟牛顿法学习笔记(四)BFGS 算法

    机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF ...

  7. 牛顿法与拟牛顿法学习笔记(三)DFP 算法

    机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF ...

  8. 牛顿法与拟牛顿法学习笔记(五)L-BFGS 算法

    机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF ...

  9. <转>牛顿法与拟牛顿法

    转自:http://blog.csdn.net/itplus/article/details/21896619 机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要 ...

随机推荐

  1. 在训练CNN时,loss稳定在log(类别数)

    参见知乎问题! https://www.zhihu.com/question/275774218 很多框架都会有一个问题,当卷积 weight NaN 之后,卷积的 output 会变成 NaN.然后 ...

  2. MongoDB安装、CURD增改查删操作、应用场景

    NoSQL(NoSQL = Not Only SQL ),意即"不仅仅是SQL".非关系型的数据存储 MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 ...

  3. 提升效率的JQUERY(转)

    摘要 本文部分整理了JQuery性能提升的一些方法,内容综合自artzstudio,viralpatel,htmlgoodies等网站,希望对大家有所帮助.这些规则虽然简单,但如果不遵循就会影响程序执 ...

  4. C6455 CSL_EMIF详解

    C6455 CSL_EMIF详解 原网址http://www.61ic.com/Article/C6000/C64X/201303/47507.html C6455CSL详解 和DSP6455的EMI ...

  5. 初识Quartz(一)

    首先需要一个任务: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 package quartz_proj ...

  6. intent 启动activity、service的方法

    1.通过intent启动service. 通过传递一个Intent对象至Context.startService()将启动一个服务(或给予正在运行的服务以一个新的指令).Android调用服务的onS ...

  7. Goole Python 风格指南 中文版

    http://zh-google-styleguide.readthedocs.io/en/latest/google-python-styleguide/

  8. ubuntu如何使用minicom

    minicom是linux下串口通信的软件,它的使用完全依靠键盘的操作,虽然没有“超级终端”那么易用,但是使用习惯之后读者将会体会到它的高效与便利,下面将讲解minicom的安装和配置. 一.安装mi ...

  9. samba实现文件共享

    很多时候,做嵌入式开发,都是在windows上安装虚拟,在虚拟机中安装Linux操作系统.这个时候,我们经常需要Linux操作系统下有一个目录能在windows下自由访问.要想实现这个功能我们只需要在 ...

  10. PHP编译configure时常见错误

    PHP的安装虽然有时候很简单,可是如果应用一多,我们安装起来就很头痛了!出错最多的就是安装PHP扩展的时候了.其实不管是你是Apache类的应用还是Nginx类的,PHP的安装都不是很简单,虽然网上有 ...