Gold Balanced Lineup - poj 3274 (hash)
这题,看到别人的解题报告做出来的,分析:
大概意思就是:
数组sum[i][j]表示从第1到第i头cow属性j的出现次数。
所以题目要求等价为:
求满足
sum[i][0]-sum[j][0]=sum[i][1]-sum[j][1]=.....=sum[i][k-1]-sum[j][k-1] (j<i)
中最大的i-j
将上式变换可得到
sum[i][1]-sum[i][0] = sum[j][1]-sum[j][0]
sum[i][2]-sum[i][0] = sum[j][2]-sum[j][0]
......
sum[i][k-1]-sum[i][0] = sum[j][k-1]-sum[j][0]
令C[i][y]=sum[i][y]-sum[i][0] (0<y<k)
初始条件C[0][0~k-1]=0
所以只需求满足C[i][]==C[j][] 中最大的i-j,其中0<=j<i<=n。
C[i][]==C[j][] 即二维数组C[][]第i行与第j行对应列的值相等,
那么原题就转化为求C数组中 相等且相隔最远的两行的距离i-j
大概意思就是:
数组sum[i][j]表示从第1到第i头cow属性j的出现次数。
所以题目要求等价为:
求满足
sum[i][0]-sum[j][0]=sum[i][1]-sum[j][1]=.....=sum[i][k-1]-sum[j][k-1] (j<i)
中最大的i-j
将上式变换可得到
sum[i][1]-sum[i][0] = sum[j][1]-sum[j][0]
sum[i][2]-sum[i][0] = sum[j][2]-sum[j][0]
......
sum[i][k-1]-sum[i][0] = sum[j][k-1]-sum[j][0]
令C[i][y]=sum[i][y]-sum[i][0] (0<y<k)
初始条件C[0][0~k-1]=0
所以只需求满足C[i][]==C[j][] 中最大的i-j,其中0<=j<i<=n。
C[i][]==C[j][] 即二维数组C[][]第i行与第j行对应列的值相等,
那么原题就转化为求C数组中 相等且相隔最远的两行的距离i-j
以样例为例
7 3
7
6
7
2
1
4
2
先把7个十进制特征数转换为二进制,并逆序存放到特征数组feature[ ][ ],得到:
7 ->1 1 1
6 ->0 1 1
7 ->1 1 1
2 ->0 1 0
1 ->1 0 0
4 ->0 0 1
2 ->0 1 0
(行数为cow编号,自上而下从1开始;列数为特征编号,自左到右从0开始)
再求sum数组,逐行累加得,sum数组为
1 1 1
1 2 2
2 3 3
2 4 3
3 4 3
3 4 4
3 5 4
再利用C[i][y]=sum[i][y]-sum[i][0]求C数组,即所有列都减去第一列
注意C数组有第0行,为全0
0 0 0 -> 第0行
0 0 0
0 1 1 <------
0 1 1
0 2 1
0 1 0
0 1 1 <-------
0 2 1
显然第2行与第6行相等,均为011,且距离最远,距离为6-2=4,这就是所求。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int num[][];
int N,K;
struct hash{
int ind;
hash* next;
};
hash hashtable[];
int gethash(int id){
num[id][]=;
for(int i=;i<K;i++){
num[id][]+=num[id][i]*i;
}
num[id][]=(num[id][]&0x7fffffff)%;
return num[id][];
}
int isEqual(int id1,int id2){
int flag=;
for(int i=;i<K;i++){
if(num[id1][i]!=num[id2][i]){
flag=;
}
}
return flag;
}
int main(){
scanf("%d %d",&N,&K);
for(int j=;j<K;j++){
num[][j]=;
}
memset(hashtable,,sizeof(hash)*);
for(int i=;i<=N;i++){
int t;
scanf("%d",&t);
for(int j=;j<K;j++){
num[i][j]=t%;
t=t>>;
num[i][j]+=num[i-][j];
} } int result=;
for(int i=;i<=N;i++){
for(int j=;j<K;j++){
num[i][j]-=num[i][];
}
int h=gethash(i);
hash *t=(hash*)malloc(sizeof(hash));
t->next=hashtable[h].next;
t->ind=i;
hashtable[h].next=t;
while(t!=NULL){
if(isEqual(t->ind,i)){
int tmp=i-t->ind;
result=result>tmp?result:tmp;
}
t=t->next;
}
}
printf("%d\n",result);
return ;
}
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 13200 | Accepted: 3866 |
Description
Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow down the list of features shared by his cows to a list of only K different features (1 ≤ K ≤ 30). For example, cows exhibiting feature #1 might have spots, cows exhibiting feature #2 might prefer C to Pascal, and so on.
FJ has even devised a concise way to describe each cow in terms of its "feature ID", a single K-bit integer whose binary representation tells us the set of features exhibited by the cow. As an example, suppose a cow has feature ID = 13. Since 13 written in binary is 1101, this means our cow exhibits features 1, 3, and 4 (reading right to left), but not feature 2. More generally, we find a 1 in the 2^(i-1) place if a cow exhibits feature i.
Always the sensitive fellow, FJ lined up cows 1..N in a long row and noticed that certain ranges of cows are somewhat "balanced" in terms of the features the exhibit. A contiguous range of cows i..j is balanced if each of the K possible features is exhibited by the same number of cows in the range. FJ is curious as to the size of the largest balanced range of cows. See if you can determine it.
Input
Lines 2..N+1: Line i+1 contains a single K-bit integer specifying the features present in cow i. The least-significant bit of this integer is 1 if the cow exhibits feature #1, and the most-significant bit is 1 if the cow exhibits feature #K.
Output
Sample Input
7 3
7
6
7
2
1
4
2
Sample Output
4
Hint
Gold Balanced Lineup - poj 3274 (hash)的更多相关文章
- Gold Balanced Lineup POJ - 3274
Description Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been abl ...
- POJ 3274 Gold Balanced Lineup
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10924 Accepted: 3244 ...
- POJ 3274:Gold Balanced Lineup 做了两个小时的哈希
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13540 Accepted: ...
- 哈希-Gold Balanced Lineup 分类: POJ 哈希 2015-08-07 09:04 2人阅读 评论(0) 收藏
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13215 Accepted: 3873 ...
- 1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列
1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 510 S ...
- 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)
P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...
- poj 3274 Gold Balanced Lineup(哈希 )
题目:http://poj.org/problem?id=3274 #include <iostream> #include<cstdio> #include<cstri ...
- POJ 3274 Gold Balanced Lineup(哈希)
http://poj.org/problem?id=3274 题意 :农夫约翰的n(1 <= N <= 100000)头奶牛,有很多相同之处,约翰已经将每一头奶牛的不同之处,归纳成了K种特 ...
- POJ 3274 Gold Balanced Lineup 哈希,查重 难度:3
Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow ...
随机推荐
- 关于BOM UTF8
这三篇可以看下: http://www.zhihu.com/question/20167122 http://www.cnblogs.com/DDark/archive/2011/11/28/2266 ...
- 搭建vue全家桶
1.直接利用vue-cli脚手架快速搭建 (1)全局安装vue-cli npm install -g vue-cli (2)创建项目 vue init webpack-simple my-projec ...
- Coherence对象压缩以及对象大小计算
1.通过util.zip带的gzip压缩程序 Coherence对象压缩程序如下 package coherencetest; import com.tangosol.net.CacheFactor ...
- 各种分布 高斯 Gamma Beta 多项分布
- SQL注入之导出WebShell
已经听N个人过说有人已经发现SQL注入Access得到webshell的技术了,也只是听说而已,具体的细节还是不得而知. 最近在看的书中一章提到Jet的安全,然后灵光一闪,呵呵,发现了一种可以利用ac ...
- 【android相关】【问题解决】R.java文件丢失
在进行android开发过程中,有时候,我们会遇到gen文件中R.java丢失的现象.重新build,或者clean工程,close并重新打开Project,但有时也没解决. 这可能是由于不小心把xm ...
- 程序员取悦女票的正确姿势---Tip1(iOS美容篇)
代码地址如下:http://www.demodashi.com/demo/11695.html 前言 女孩子都喜欢用美图工具进行图片美容,近来无事时,特意为某人写了个自定义图片滤镜生成器,安装到手机即 ...
- [1-5] 把时间当做朋友(李笑来)Chapter 5 【小心所谓成功学】 摘录
有一个事实非常简单,却令人难以接受.这世界上所有的资源并非平均分布在每一个人的身上,能够比较接近地表示这种分布情况的数学曲线叫做“正态分布曲线”(Normal Distribution Curve) ...
- 【C#系列】你应该知道的委托和事件
[C#系列]你应该知道的委托和事件 本篇文章更适合具有一定开发经验,一定功底,且对底层代码有所研究的朋友!!! 本篇文章主要采用理论和代码实例相结合方式来论述委托和事件,涉及到一些边界技术,如软件 ...
- iOS定位服务CoreLocation
欢迎訪问我的新博客: 开发人员说 基于LBS的应用开发是当今移动开发中的一大热门, 当中主要涉及到地图和定位两个方面. iOS开发中, 定位服务依赖于CoreLocation框架, CLLocatio ...