There are 8 prison cells in a row, and each cell is either occupied or vacant.

Each day, whether the cell is occupied or vacant changes according to the following rules:

  • If a cell has two adjacent neighbors that are both occupied or both vacant, then the cell becomes occupied.
  • Otherwise, it becomes vacant.

(Note that because the prison is a row, the first and the last cells in the row can't have two adjacent neighbors.)

We describe the current state of the prison in the following way: cells[i] == 1 if the i-th cell is occupied, else cells[i] == 0.

Given the initial state of the prison, return the state of the prison after N days (and N such changes described above.)

 

Example 1:

Input: cells = [0,1,0,1,1,0,0,1], N = 7
Output: [0,0,1,1,0,0,0,0]
Explanation:
The following table summarizes the state of the prison on each day:
Day 0: [0, 1, 0, 1, 1, 0, 0, 1]
Day 1: [0, 1, 1, 0, 0, 0, 0, 0]
Day 2: [0, 0, 0, 0, 1, 1, 1, 0]
Day 3: [0, 1, 1, 0, 0, 1, 0, 0]
Day 4: [0, 0, 0, 0, 0, 1, 0, 0]
Day 5: [0, 1, 1, 1, 0, 1, 0, 0]
Day 6: [0, 0, 1, 0, 1, 1, 0, 0]
Day 7: [0, 0, 1, 1, 0, 0, 0, 0]

Example 2:

Input: cells = [1,0,0,1,0,0,1,0], N = 1000000000
Output: [0,0,1,1,1,1,1,0]

Note:

  1. cells.length == 8
  2. cells[i] is in {0, 1}
  3. 1 <= N <= 10^9

如果知道有规律,那么就可以好解,只需要暴力跑一次找出规律就行。这题还真的是有规律,就是14天一次的规律

class Solution {
public:
vector<int> prisonAfterNDays(vector<int>& cells, int N) {
int len = cells.size();
int num[];
int x = N% == ? : N%;
for(int i=;i<x;i++){ for(int j=;j<=;j++){
num[j] = cells[j-]+cells[j+];
}
for(int j=;j<=;j++){
if(num[j]==||num[j]==){
cells[j]=;
}else{
cells[j]=;
}
}
if(cells[]==){
cells[]=;
}
if(cells[]==){
cells[]=;
}
}
//89
//96
//14
//
return cells;
}
};

115th LeetCode Weekly Contest Prison Cells After N Days的更多相关文章

  1. 115th LeetCode Weekly Contest Check Completeness of a Binary Tree

    Given a binary tree, determine if it is a complete binary tree. Definition of a complete binary tree ...

  2. LeetCode Weekly Contest 8

    LeetCode Weekly Contest 8 415. Add Strings User Accepted: 765 User Tried: 822 Total Accepted: 789 To ...

  3. leetcode weekly contest 43

    leetcode weekly contest 43 leetcode649. Dota2 Senate leetcode649.Dota2 Senate 思路: 模拟规则round by round ...

  4. LeetCode Weekly Contest 23

    LeetCode Weekly Contest 23 1. Reverse String II Given a string and an integer k, you need to reverse ...

  5. Leetcode Weekly Contest 86

    Weekly Contest 86 A:840. 矩阵中的幻方 3 x 3 的幻方是一个填充有从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等. 给定一个 ...

  6. 【LeetCode】957. Prison Cells After N Days 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 周期是14 日期 题目地址:https://leet ...

  7. LeetCode Weekly Contest

    链接:https://leetcode.com/contest/leetcode-weekly-contest-33/ A.Longest Harmonious Subsequence 思路:hash ...

  8. 【LeetCode Weekly Contest 26 Q4】Split Array with Equal Sum

    [题目链接]:https://leetcode.com/contest/leetcode-weekly-contest-26/problems/split-array-with-equal-sum/ ...

  9. 【LeetCode Weekly Contest 26 Q3】Friend Circles

    [题目链接]:https://leetcode.com/contest/leetcode-weekly-contest-26/problems/friend-circles/ [题意] 告诉你任意两个 ...

随机推荐

  1. solr开发 小案例

    <?xml version="1.0" encoding="UTF-8"?> <web-app version="3.0" ...

  2. 第二章启程前的认知准备,2.1Opencv官方例程引导与赏析

    1.在opencv安装目录下,可以找到opencv官方提供的示例代码,具体位于...\opencv\sources\samples目录下,如下所示 名为c的文件夹存放着opencv1.0等旧版本的示例 ...

  3. IE6支持兼容max-height、min-height CSS样式

    1.IE6支持max-height解决方法   -   TOP IE6支持最大高度解决CSS代码: .yangshi{max-height:1000px;_height:expression((doc ...

  4. Terminologies in MVC: Part 2 (Razor Engine Syntax vs Web Form)

    By Abhishek Jaiswal :) on Mar 21, 2015 In this article we learn about Razor Engine Syntax vs Web For ...

  5. LightOJ 1258 Making Huge Palindromes (Manacher)

    题意:给定上一个串,让你在后面添加一些字符,使得这个串成为一个回文串. 析:先用manacher算法进行处理如果发现有字符匹配超过最长的了,结束匹配,答案就是该字符前面那个长度加上该串原来的长度. 代 ...

  6. psimpl_v7_win32_demo

    psimpl - generic n-dimensional polyline simplification 通用N维折线简化程序 Author - Elmar de Koning 作者 - Elma ...

  7. PhoneGap Android环境搭建

    原文地址:http://www.cnblogs.com/shawn-xie/archive/2012/08/15/2638480.html 一.安装 在安装PhoneGap开发环境之前,需要按顺序安装 ...

  8. C# 多线程操作实例

    1.多线程操作 一旦打开线程就必须记得关闭 1.第一部分 这是个数字叠加小功能 private void CountTo(int countTo, CancellationToken ct) { ; ...

  9. Java并发编程的3个特性

    一.原子性 原子行:即一个或者多个操作作为一个整体,要么全部执行,要么都不执行,并且操作在执行过程中不会被线程调度机制打断:而且这种操作一旦开始,就一直运行到结束,中间不会有任何上下文切换(conte ...

  10. C#判断程序调用外部的exe已结束

    来源: C#如何判断程序调用的exe已结束 方法一:这种方法会阻塞当前进程,直到运行的外部程序退出 System.Diagnostics.Process exep = System.Diagnosti ...