题意:给定\(k,b,n,m\),求\(\sum_{i=0}^{n-1}f(g(i))\)

其中\(f(i)=f(i-1)+f(i-2),f(1)=1,f(0)=0\),\(g(i)=k*i+b\)

令矩阵\(A\)为

\[\begin{bmatrix}
1 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

那么

\[\begin{bmatrix}
f(n+1) \\
f(n) \\
\end{bmatrix}=A^n \begin{bmatrix}
1 \\
0 \\
\end{bmatrix}
\]

我们所求的$$S = f(g(1))+f(g(2))+...+f(g(n-1)) $$

\[S=f(b)+f(k+b)+f(k*2+b)+...+f(k*(n-1)+b)
\]

\[S=A^b\begin{bmatrix}1 \\0 \\\end{bmatrix}+A^{k+b}\begin{bmatrix}1 \\0 \\\end{bmatrix}+...+A^{k(n-1)+b}\begin{bmatrix}1 \\0 \\\end{bmatrix}
\]

\[S=A^b[E+(A^k)^1+(A^k)^2...+(A^k)^{n-1}]\begin{bmatrix}1 \\0 \\\end{bmatrix}
\]

中间的前缀和求法可参考我上一篇文章(p讲解都没有):http://www.cnblogs.com/caturra/p/8452828.html

#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define println(a) printf("%lld\n",(ll)a)
using namespace std;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
ll k,b,n,m;
struct Matrix{
ll mt[5][5],r,c;
void init(int rr,int cc,bool flag=0){
r=rr;c=cc;
memset(mt,0,sizeof mt);
if(flag) rep(i,1,r) mt[i][i]=1;
}
Matrix operator * (Matrix rhs){
Matrix ans; ans.init(r,rhs.c);
rep(i,1,r){
rep(j,1,rhs.c){
int t=max(r,rhs.c);
rep(k,1,t){
ans.mt[i][j]+=(mt[i][k]*rhs.mt[k][j])%m;
ans.mt[i][j]=(ans.mt[i][j])%m;
}
}
}
return ans;
}
};
Matrix fpw(Matrix A,ll n){
Matrix ans;ans.init(A.r,A.c,1);
while(n){
if(n&1) ans=ans*A;
n>>=1;
A=A*A;
}
return ans;
}
int bas[3][3]={
{0,0,0},
{0,1,1},
{0,1,0}
};
int bas2[3]={0,1,0};
int main(){
Matrix A; A.init(2,2);
rep(i,1,2)rep(j,1,2) A.mt[i][j]=bas[i][j];
Matrix C; C.init(2,1);
rep(i,1,2) C.mt[i][1]=bas2[i];
while(cin>>k>>b>>n>>m){
Matrix Ak=fpw(A,k);
Matrix Ab=fpw(A,b);
Matrix UNIT; UNIT.init(2,2,1);
Matrix B; B.init(4,4);
rep(i,1,2)rep(j,1,2) B.mt[i][j]=Ak.mt[i][j];
rep(i,1,2)rep(j,3,4) B.mt[i][j]=UNIT.mt[i][j-2];
rep(i,3,4)rep(j,3,4) B.mt[i][j]=UNIT.mt[i-2][j-2];
Matrix res=fpw(B,n);
B.init(2,2);
rep(i,1,2) rep(j,1,2) B.mt[i][j]=res.mt[i][j+2];
res=Ab*B*C;
println(res.mt[2][1]);
}
return 0;
}

HDU - 1588 矩阵前缀和的更多相关文章

  1. hdu 1588(矩阵好题+递归求解等比数列)

    Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU 1588 矩阵快速幂 嵌套矩阵

    这个题目搞了我差不多一个下午,之前自己推出一个公式,即 f[n+k]=k*f[n]+f[n-1]结果发现根本不能用,无法降低复杂度. 后来又个博客的做法相当叼,就按他的做法来了 即 最终求得是 S(n ...

  3. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  4. UVALive 7139 Rotation(矩阵前缀和)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  5. hdu 4291 矩阵幂 循环节

    http://acm.hdu.edu.cn/showproblem.php?pid=4291 凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙: g(g(g(n))) mod 109  ...

  6. 杭电第四场 hdu6336 Problem E. Matrix from Arrays 打表找规律 矩阵前缀和(模板)

    Problem E. Matrix from Arrays Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 ...

  7. hdu 1588(Fibonacci矩阵求和)

    题目的大意就是求等差数列对应的Fibonacci数值的和,容易知道Fibonacci对应的矩阵为[1,1,1,0],因为题目中f[0]=0,f[1]=1,所以推出最后结果f[n]=(A^n-1).a, ...

  8. HDU - 1588 Gauss Fibonacci (矩阵高速幂+二分求等比数列和)

    Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very cle ...

  9. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

随机推荐

  1. 4-fiddler抓包中文乱码:

    接受到的html被压缩了,要解压,在工具栏有decode

  2. 安装 SQL Server 2014 Express

    安装 SQL Server 2014 Express 我的电脑系统: Windows 10 64位 一 . 下载 安装Microsoft SQL Server 2014 Express 软甲下载地址: ...

  3. PostgreSQL的索引选型

    PostgreSQL里面给全文检索或者模糊查询加索引提速的时候,一般会有两个选项,一个是GIST类型,一个是GIN类型,官网给出的参考如下: There are substantial perform ...

  4. p2150 [NOI2015]寿司晚宴

    传送门 分析 我们发现对于大于$\sqrt(n)$的数每个数最多只会包含一个 所以我们把每个数按照大质数的大小从小到大排序 我们知道对于一种大质数只能被同一个人取 所以f1表示被A取,f2表示被B取 ...

  5. seconds

    set_time_limit();//设置脚本运行时间为1秒

  6. Vue.js 安装及其环境搭建

    For me or other first studying vue.js. For Windows PC: 1.先安装node.js 安装官网最新的即可 版本应该要大于6.0版本 nodejs的官网 ...

  7. 修改laravel中的pagination的样式

    运行如下命令,拷贝出pagination样式到public/vendor目录下, 然后在pagination实例上调用links(‘传路径’)方法 使用起来非常方便,同时也可以自定义样式

  8. 数据库 MySQL 之 基本概念

    数据库 MySQL 之 基本概念 浏览目录 概述 数据库的特点 数据库的分类 选择MySQL的理由 & MariaDB 介绍 下载及安装 SQL介绍 一.概述 1.数据(data) 存储在表中 ...

  9. Python基础入门-集合

    今天给大家分享的是python中集合(set)的概念,集合这个词其实和高中学的数学集合的概念很相近,或者作为初学者你就可以把它理解为数学当中的集合.在python中集合(set)是由一个个键组成的,但 ...

  10. AutoLayout自动布局之VFL语言代码实现(一个神奇的语言)

    一.什么是VFL语言?为什么要VFL语言? VFL全称是Visual Format Language,翻译过来是“可视化格式语言” VFL是苹果公司为了简化Autolayout的编码而推出的抽象语言 ...