怜香惜玉

题意:

已知

\(f(x)=\frac{2 \times \sum_{(i,x)=1}^x i}{φ(x)}\)

先给定数据组数\(t\)和\(k\)

每组数据给出\(n\),求\(\sum_{i=1}^n f(x)^k\)

数据范围

Subtask1 : n<=1000, T<=5, k<=1000 12%
Subtask2: n<=1000, T<=5, k<=1000000000 13%
Subtask3: n<=1000, T<=1000, k<=1000 12%
Subtask4: n<=1000, T<=1000000, k<=1 00000000 13%
Subtask5: n<=1000000, T<=5, k<=1000 1 2%
Subtask6: n<=1000000, T<=5, k<=1000000000 13%
Subtask7: n<=1000000, T<=1000000, k<=1000 12%
Subtask8: n<=1000000, T<=1000000, k<=1000000000 13%


我们打表就可以发现\(f(i)=i\)

呵呵,然而我这题凉掉了

第一没意识到\(gcd(a,0)=a\),导致我以为分母是\(φ(x)+1\)

第二推了一个多小时的\(\sum_{(i,x)=1}^n i\)的线筛\(O(n)\)求法

居然真给我推出来了

事实上也好证,显然\((a,b)=(a,a-b)\)

我们两两配对,显然\(f(x)=\frac{d \times x}{d \times 1}\),\(d\)是配对数量

然后随便搞一下就行了。。。。

没有代码

安徽师大附中%你赛day3T1 怜香惜玉 解题报告的更多相关文章

  1. 安徽师大附中%你赛day2T3 巧克力 解题报告

    巧克力 题目描述 小\(T\)有\(N\)块巧克力, 每块巧克力上都有一句话(由小写英文字母组成,不含标点) .现在每块巧克力都断成了若干截,更糟糕的是,有一些碎片丢失了 ,但是剩下的碎片之间的顺序是 ...

  2. 安徽师大附中%你赛day4T2 演讲解题报告

    演讲 题目背景: 众所周知,\(\mathrm{Zdrcl}\)是一名天天\(\mathrm{AK}\)的高水平选手. 作为一民长者,为了向大家讲述自己\(\mathrm{AK}\)的经验,他决定在一 ...

  3. 安徽师大附中%你赛day4T1 金字塔 解题报告

    金字塔 题目背景: \(Zdrcl\)带着妹子们来到了胡夫金字塔周边旅游, 发现这里正在进行一个有关金字塔的游戏 题目描述: 游戏规则如下: 1. 这里的金字塔是一个 \(N\) 阶的二维金字塔. 2 ...

  4. 安徽师大附中%你赛day9 T2 富 解题报告

    富 题目背景 出于某些原因, 苟先生在追杀富先生. 题目描述 富先生所在的地方是一个\(n\times m\)的网格,苟先生排出了他的狼狗大军,共有\(k\)条狗,第\(i\)条狗所在的位置为\((x ...

  5. 安徽师大附中%你赛day9 T3 贵 解题报告

    贵 问题描述 苟先生的狼狗大军没有追上富先生, 所以他把它们都解雇了, 决定去雇佣一些更好的狗, 不过狗可是很贵的.苟先生有 \(w\) 元钱, 有 \(n\) 条狗可以雇佣, 第 \(i\) 条狗有 ...

  6. 安徽师大附中%你赛day7 T2 乘积 解题报告

    乘积 题目背景 \(\mathrm{Smart}\) 最近在潜心研究数学, 他发现了一类很有趣的数字, 叫做无平方因子数. 也就是这一类数字不能够被任意一个质数的平方整除, 比如\(6\).\(7\) ...

  7. 安徽师大附中%你赛day6 T3 Hamsters [POI2010]CHO-Hamsters 解题报告

    [POI2010]CHO-Hamsters 题意: 给出n个互不包含的字符串,要求你求出一个最短的字符串S,使得这n个字符串在S中总共至少出现m次,问S最短是多少? 范围: \(1 \le n \le ...

  8. 安徽师大附中%你赛day5 T3 树上行走 解题报告

    树上行走 题目背景 \(\mathrm{Smart}\) 的脑洞非常大, 经常幻想出一些奇怪的东西. 题目描述 某一天,\(\mathrm{Smart}\) 幻想出了一棵没有边际的二叉树,脑补着在那棵 ...

  9. 模拟赛T2 交换 解题报告

    模拟赛T2 交换 解题报告 题目大意: 给定一个序列和若干个区间,每次从区间中选择两个数修改使字典序最小. \(n,m\) 同阶 \(10^6\) 2.1 算法 1 按照题意模拟,枚举交换位置并比较. ...

随机推荐

  1. php中 include 、include_once、require、require_once4个语言结构的含义和区别

    对于不同页面中的相同代码部分,可以将其分离为单个文件 ,通过include引入文件. 可以提高代码的复用率 include 和include_once都有引入文件的作用 使用的语法是 :include ...

  2. 第1章 MATLAB概述

    MATLAB系统由~开发环境.~语言.~数学函数库.~图形处理系统.~应用程序接口(API)5大部分组成. 界面 命令行中的语句格式 命令行的语句格式:>>变量=表达式(没有>> ...

  3. 《UML大战需求分析》阅读笔记1

    通过阅读本书的序和第一章,让我对于UML的理解更加深刻了,并且懂了怎样把你UML学的更好. 作者先让我们明白什么是UML,大概知道了UML各个图的形态和各种用途,然后再详细的介绍各个图怎样使用. UM ...

  4. Odoo8中安装新模块找不到的问题

    为了要让系统识别出新的模块,我们需要打开用户的技术特性选项,具体在    左侧栏目->用户->administrator,  将技术特性勾选上,刷新.  然后左侧栏目->模块下面就会 ...

  5. 初步学习pg_control文件之二

    接前文:初步认识pg_control文件 继续学习,pg_control文件在何处形成的?是在initdb的时候,运用的函数如下: /* * This func must be called ONCE ...

  6. 2、Java并发编程:如何创建线程

    Java并发编程:如何创建线程? 在前面一篇文章中已经讲述了在进程和线程的由来,今天就来讲一下在Java中如何创建线程,让线程去执行一个子任务.下面先讲述一下Java中的应用程序和进程相关的概念知识, ...

  7. [B2B、B2C、C2C] 区别介绍

    最近在学习建站系统的时候,偶尔我们的老大会说几个自己所不太了解的名词“简称”,所以呢?我就总结了一下,如果有不全面的地方,还请博友们多多指点! B2B B2B(也有写成BTB)是指企业对企业之间的营销 ...

  8. Python 3基础教程20-Python中导入模块和包

    本文介绍Python中导入模块和包 #目录: # 导入模块和包--- # | # 上级包.上级模块.导入模块和包的init模块----- # | # 同级包.同级模块.上级包的init模块.test模 ...

  9. Selenium驱动Chrome浏览器

    import org.openqa.selenium.By;import org.openqa.selenium.WebDriver;import org.openqa.selenium.chrome ...

  10. Java开发JDBC连接数据库

    Java开发JDBC连接数据库 创建一个以JDBC连接数据库的程序,包含6个步骤: JDBC五部曲1.加载驱动2.获得链接3.获取statement对象 4.执行SQL语句5.产生resultset对 ...