怜香惜玉

题意:

已知

\(f(x)=\frac{2 \times \sum_{(i,x)=1}^x i}{φ(x)}\)

先给定数据组数\(t\)和\(k\)

每组数据给出\(n\),求\(\sum_{i=1}^n f(x)^k\)

数据范围

Subtask1 : n<=1000, T<=5, k<=1000 12%
Subtask2: n<=1000, T<=5, k<=1000000000 13%
Subtask3: n<=1000, T<=1000, k<=1000 12%
Subtask4: n<=1000, T<=1000000, k<=1 00000000 13%
Subtask5: n<=1000000, T<=5, k<=1000 1 2%
Subtask6: n<=1000000, T<=5, k<=1000000000 13%
Subtask7: n<=1000000, T<=1000000, k<=1000 12%
Subtask8: n<=1000000, T<=1000000, k<=1000000000 13%


我们打表就可以发现\(f(i)=i\)

呵呵,然而我这题凉掉了

第一没意识到\(gcd(a,0)=a\),导致我以为分母是\(φ(x)+1\)

第二推了一个多小时的\(\sum_{(i,x)=1}^n i\)的线筛\(O(n)\)求法

居然真给我推出来了

事实上也好证,显然\((a,b)=(a,a-b)\)

我们两两配对,显然\(f(x)=\frac{d \times x}{d \times 1}\),\(d\)是配对数量

然后随便搞一下就行了。。。。

没有代码

安徽师大附中%你赛day3T1 怜香惜玉 解题报告的更多相关文章

  1. 安徽师大附中%你赛day2T3 巧克力 解题报告

    巧克力 题目描述 小\(T\)有\(N\)块巧克力, 每块巧克力上都有一句话(由小写英文字母组成,不含标点) .现在每块巧克力都断成了若干截,更糟糕的是,有一些碎片丢失了 ,但是剩下的碎片之间的顺序是 ...

  2. 安徽师大附中%你赛day4T2 演讲解题报告

    演讲 题目背景: 众所周知,\(\mathrm{Zdrcl}\)是一名天天\(\mathrm{AK}\)的高水平选手. 作为一民长者,为了向大家讲述自己\(\mathrm{AK}\)的经验,他决定在一 ...

  3. 安徽师大附中%你赛day4T1 金字塔 解题报告

    金字塔 题目背景: \(Zdrcl\)带着妹子们来到了胡夫金字塔周边旅游, 发现这里正在进行一个有关金字塔的游戏 题目描述: 游戏规则如下: 1. 这里的金字塔是一个 \(N\) 阶的二维金字塔. 2 ...

  4. 安徽师大附中%你赛day9 T2 富 解题报告

    富 题目背景 出于某些原因, 苟先生在追杀富先生. 题目描述 富先生所在的地方是一个\(n\times m\)的网格,苟先生排出了他的狼狗大军,共有\(k\)条狗,第\(i\)条狗所在的位置为\((x ...

  5. 安徽师大附中%你赛day9 T3 贵 解题报告

    贵 问题描述 苟先生的狼狗大军没有追上富先生, 所以他把它们都解雇了, 决定去雇佣一些更好的狗, 不过狗可是很贵的.苟先生有 \(w\) 元钱, 有 \(n\) 条狗可以雇佣, 第 \(i\) 条狗有 ...

  6. 安徽师大附中%你赛day7 T2 乘积 解题报告

    乘积 题目背景 \(\mathrm{Smart}\) 最近在潜心研究数学, 他发现了一类很有趣的数字, 叫做无平方因子数. 也就是这一类数字不能够被任意一个质数的平方整除, 比如\(6\).\(7\) ...

  7. 安徽师大附中%你赛day6 T3 Hamsters [POI2010]CHO-Hamsters 解题报告

    [POI2010]CHO-Hamsters 题意: 给出n个互不包含的字符串,要求你求出一个最短的字符串S,使得这n个字符串在S中总共至少出现m次,问S最短是多少? 范围: \(1 \le n \le ...

  8. 安徽师大附中%你赛day5 T3 树上行走 解题报告

    树上行走 题目背景 \(\mathrm{Smart}\) 的脑洞非常大, 经常幻想出一些奇怪的东西. 题目描述 某一天,\(\mathrm{Smart}\) 幻想出了一棵没有边际的二叉树,脑补着在那棵 ...

  9. 模拟赛T2 交换 解题报告

    模拟赛T2 交换 解题报告 题目大意: 给定一个序列和若干个区间,每次从区间中选择两个数修改使字典序最小. \(n,m\) 同阶 \(10^6\) 2.1 算法 1 按照题意模拟,枚举交换位置并比较. ...

随机推荐

  1. [转]App离线本地存储方案

    App离线本地存储方案 原文地址:http://ask.dcloud.net.cn/article/166 HTML5+的离线本地存储有如下多种方案:HTML5标准方案:cookie.localsto ...

  2. 深入理解is_callable和method_exists

    一.函数解析 is_callable() 定义: (PHP 4 >= 4.0.6, PHP 5, PHP 7) is_callable — 检测参数是否为合法的可调用结构 bool is_cal ...

  3. 学习新框架laravel 5.6 (第二天)-DB,控制器及模型使用

    DB类使用,控制器使用及模型使用 链接数据库: /config/database.php /.env DB_CONNECTION=mysql DB_HOST=127.0.0.1 DB_PORT=330 ...

  4. 初识python 文件读取 保存

    上一章最后一题的答案:infors.sort(key=lambda x:x['age'])print(infors)--->[{'name': 'laowang', 'age': 23}, {' ...

  5. SAP ABAP Development Tools in Eclipseのセットアップ

    手順 1. Eclipse IDE インストール 以下からダウンロード.https://tools.hana.ondemand.com/#abap※2018/1月現在 Oxygen(4.7)詳細は割愛 ...

  6. Fragment保持状态切换

    在使用Activity管理多个Fragment时,每次切换Fragment使用的是replace,结果导致出现xxx is not currently in the FragmentManager异常 ...

  7. Android开发——View绘制过程源码解析(一)

    )UNSPECIFIED:表示View可以设置成任意的大小,没有任何限制.这种情况比较少见. 2. MeasureSpec的生成过程 2.1 顶级View的MeasureSpec // desired ...

  8. LeetCode:12. Integer to Roman(Medium)

    1. 原题链接 https://leetcode.com/problems/integer-to-roman/description/ 2. 题目要求 (1) 将整数转换成罗马数字: (2) 整数的范 ...

  9. web框架与爬虫

    所有的web框架 http://www.cnblogs.com/wupeiqi/articles/5341480.html 爬虫技术 http://www.cnblogs.com/wupeiqi/ar ...

  10. jmeter3.2版本如何进行webservice接口功能测试

    jmeter3.2版本之后就没有SOAP/XML-RPC Request插件了,所以没办法直接进行webservice接口的测试. 原理上: Web service一般就是用SOAP协议通过HTTP来 ...