题目描述

输入输出格式

输入格式:

输入文件第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。

输出格式:

输出满足条件的树有多少棵。

输入输出样例

输入样例#1:
复制

4
2 1 2 1
输出样例#1: 复制

2
首先不知道prufer序列的可以学一下;
https://blog.csdn.net/update7/article/details/77587329
知道以后,其实就是依据该序列来还原树;
prufer的长度为n-2,所以全排列为(n-2)!;
考虑重复排列;
那么:

然后分解质因数即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-11
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
ll d[200];
ll ct[200]; void sol(int x, int k) {
int dv = 2;
while (x > 1) {
if (x%dv == 0) {
ct[dv] += k; x /= dv;
}
else dv++;
}
} int main() {
// ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
n = rd(); int tot = 0;
for (int i = 1; i <= n; i++) {
rdllt(d[i]);
if (d[i] > 1)tot += (d[i] - 1);
}
if (n == 1) {
if (!d[1])cout << 1 << endl;
else cout << 0 << endl;
return 0;
}
if (tot != n - 2) { cout << 0 << endl; return 0; }
for (int i = 2; i <= n - 2; i++) {
sol(i, 1);
}
for (int i = 1; i <= n; i++) {
for (int j = 2; j < d[i]; j++) {
sol(j, -1);
}
}
ll ans = 1;
for (ll i = 1; i <= n; i++) {
for (ll j = 1; j <= ct[i]; j++)ans *= i;
}
printf("%lld\n", ans * 1ll);
return 0;
}

[HNOI2004]树的计数 BZOJ 1211 prufer序列的更多相关文章

  1. LUOGU P2290 [HNOI2004]树的计数(组合数,prufer序)

    传送门 解题思路 \(prufer\)序,就是所有的不同的无根树,都可以转化为唯一的序列.做法就是每次从度数为\(1\)的点中选出一个字典序最小的,把这个点删掉,并把这个点相连的节点加入序列,直到只剩 ...

  2. 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2468  Solved: 868 Description 一 ...

  3. bzoj 1211: [HNOI2004]树的计数 -- purfer序列

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...

  4. BZOJ 1211: [HNOI2004]树的计数( 组合数学 )

    知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...

  5. bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)

    1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...

  6. Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数

    最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...

  7. prufer BZOJ1211: [HNOI2004]树的计数

    以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...

  8. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  9. [HNOI2004]树的计数 prufer数列

    题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d( ...

随机推荐

  1. 【278】◀▶ Python 数学函数说明

    参考:Python 数学函数说明 目录: 一.Python 数学函数 二.Python 随机数函数 三.Python 三角函数 四.Python 数学常量 一.Python 数学函数   函数 返回值 ...

  2. Java基础知识(二)之控制语句

    1.条件运算符   ⑴if...else... ⑵三目表达式——X?Y:Z 当X为真时,结果为Y:反之,为Z. ⑶switch(表达式){ case 1:    执行代码块 1; break: cas ...

  3. 【bzoj1602】[Usaco2008 Oct]牧场行走

    1602: [Usaco2008 Oct]牧场行走 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1793  Solved: 935[Submit][St ...

  4. Log4php使用指南

      一.Log4php简介 Log4php是Log4xx系列日志组件之一,是Log4j迁移到php的版本,主要用来记录日志信息,支持多种输入目的地,包括:日志文件.日志回滚文件.数据库.日志服务器等等 ...

  5. Luogu 1606 [USACO07FEB]白银莲花池Lilypad Pond

    感觉应当挺简单的,但是弄了好久……菜死了 如果不考虑那些为$1$的点,直接跑个最短路计数就好了,但是我们现在有一些边可以不用付出代价,那么只要在连边的时候先预处理搜一下就好了. 原来的想法是拆点,但是 ...

  6. Servlet请求转发 RequestDispatcher接口.RP

    在Servlet中,利用RequestDispatcher对象,可以将请求转发给另外一个Servlet或JSP页面,甚至是HTML页面,来处理对请求的响应. 一,RequestDispatcher接口 ...

  7. 手打的table

    突然觉得,如果我不上传源码和写篇博客,对不起花在这个破网页2个小时的时间,完全手打,浏览器调效果. 源码如下: a.html: <!DOCTYPE html PUBLIC "-//W3 ...

  8. select样式调整

    如果select样式如下图:是因为添加了 border-color:#adb7d6; border-width:1px; 样式 删除上面两个样式属性,效果如下图:

  9. _AppStart.cshtml 和 _PageStart.cshtml的妙用

    Customizing Site-Wide Behavior for ASP.NET Web Pages (Razor) Sites By Tom FitzMacken|February 17, 20 ...

  10. xen创建pvm和hvm的过程

    these are the basic steps of installing domU with xen-tools in ubuntu13.04 64bit in xen4.3 you can a ...