这题最开始是用 \(n^{4}\)的算法水过的,之后才想出的\(n^{3}\)正解。首先,\(n^{4}\) 应该是很容易想到的:设状态 \(f[i][j][k]\) 为有 \(i\) 个人,庄家为 \(j\) 号人时,第 \(k\) 个人胜出的概率。这样,只需要去掉本轮淘汰的人,加上 \(i - 1\) 个人时该人胜出的概率即可。

#include <bits/stdc++.h>
using namespace std;
#define maxn 55
#define db double
int n, m, a[maxn];
db P, f[maxn][maxn][maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int main()
{
n = read(), m = read();
P = (db) / (db) m;
for(int i = ; i <= m; i ++) a[i] = read();
f[][][] = ;
for(int i = ; i <= n; i ++)
for(int j = ; j <= i; j ++)
for(int k = ; k <= i; k ++)
{
for(int x = ; x <= m; x ++)
{
int t = (a[x] + j - ) % i, T = t + , K = k;
if(!t) t = i;
if(t == k) continue;
if(K > t) K -= ; if(T > t) T -= ;
f[i][j][k] += P * f[i - ][T][K];
}
}
for(int i = ; i <= n; i ++)
printf("%.2lf%% ", f[n][][i] * );
return ;
}

   但是这题还有更优的做法。我们再看一看自己所设置的状态,详加思考就会发现:其实第二维是不必要的。谁做庄家实际上都是一个相对的概念,我们可以强制让\(1\) 号为庄家,这样只需要在新的环上找出原来编号为 \(k\) 的人对应的新编号 \(k'\) 并加上其概率就好啦。

#include <bits/stdc++.h>
using namespace std;
#define maxn 55
#define db double
int n, m, a[maxn];
db P, f[maxn][maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int main()
{
n = read(), m = read();
P = (db) / (db) m;
for(int i = ; i <= m; i ++) a[i] = read();
f[][] = ;
for(int i = ; i <= n; i ++)
for(int k = ; k <= i; k ++)
for(int x = ; x <= m; x ++)
{
int t = a[x] % i, T = t + , K = k;
if(!t) t = i;
if(t == k) continue;
if(K > t) K -= ; if(T > t) T -= ;
if(K < T) K = (i - T + K);
else if(K > T) K = K - T + ;
else K = ;
f[i][k] += P * f[i - ][K];
}
for(int i = ; i <= n; i ++)
printf("%.2lf%% ", f[n][i] * );
return ;
}

【题解】JLOI2013卡牌游戏的更多相关文章

  1. [题解] [JLOI2013] 卡牌游戏

    题面 题解 概率dp, 应该做得还是比较少的 设\(f[i][j]\)为该圈有\(i\)人时, 第\(j\)个人最后胜利的概率 枚举选择第几张卡牌, 设其值为\(card[k]\), 那么被淘汰的则是 ...

  2. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  3. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  4. bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...

  5. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

  6. 【bzoj3191】[JLOI2013]卡牌游戏 概率dp

    题目描述 n个人围成一圈玩游戏,一开始庄家是1.每次从m张卡片中随机选择1张,从庄家向下数个数为卡片上的数的人,踢出这个人,下一个人作为新的庄家.最后一个人获胜.问每个人获胜的概率. 输入 第一行包括 ...

  7. 洛谷P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  8. [JLOI2013]卡牌游戏

    [题目描述 Description] N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡 ...

  9. [bzoj3191] [JLOI2013]卡牌游戏

    概率DP. 首先由题解可得>_<,胜出概率只与剩余人数.与庄家的相对位置有关. 所以设f[i][j]表示剩下i个人,从庄家开始第j个人的胜利概率... 根据卡牌一通乱搞即可... #inc ...

  10. bzoj 3191: [JLOI2013]卡牌游戏

    Description N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X ...

随机推荐

  1. JavaScript--获取页面盒子中鼠标相对于盒子上、左边框的坐标

    分析: 外层边框是浏览器边框,内部盒子是页面的一个盒子,绿点是盒子中鼠标的位置.鼠标相对盒子边框的坐标=页面中(注意不是浏览器)鼠标坐标-盒子相对于浏览器边框的偏移量 第一步:求浏览器边框位置 x=e ...

  2. Spark-源码-Spark-Submit 任务提交

    Spark 版本:1.3 调用shell, spark-submit.sh args[] 首先是进入 org.apache.spark.deploy.SparkSubmit 类中调用他的 main() ...

  3. AB PLC 编程之状态机

    AB的程序设计和西门子有点PLC不大一样,在AB中没有RS指令,所以主要用move指令来作步进.今天我们就用Move指令写个AB的程序,和西门子比,有哪些不同. 控制任务 很简单的一个状态机.初始步为 ...

  4. jenkins邮件发送jmeter接口测试报告

    在Jenkins中配置实现邮件通知,Jenkins提供了两种方式的配置. 一种是Jenkins内置默认的邮件通知,但是它本身有很多局限性,比如它的邮件通知无法提供详细的邮件内容.无法定义发送邮件的格式 ...

  5. Leecode刷题之旅-C语言/python-26.删除数组中的重复项

    /* * @lc app=leetcode.cn id=26 lang=c * * [26] 删除排序数组中的重复项 * * https://leetcode-cn.com/problems/remo ...

  6. Android stadio bug

    好生气啊,android stadio 有bug.自己的代码,一直没有生效,原来是stadio 的问题.只是因为我打开了增强模式,后来,buildToolVersion 改了之后,android st ...

  7. jmeter之Synchronizing Timer的理解

    该功能类似loadrunner的集合点,一般按照jmeter的树形结构,放在需要设置集合点的请求之前,两个参数的意思,我们先看官网的解释: 大概意思就是: Number of Simulated Us ...

  8. Wireshark lua dissector 对TCP消息包合并分析

    应用程序发送的数据报都是流式的,IP不保证同一个一个应用数据包会被抓包后在同一个IP数据包中,因此对于使用自制dissector的时候需要考虑这种情况. Lua Dissector相关资料可以见:ht ...

  9. vue之vue-cookies使用

    一.安装vue-cookies npm install --save vue-cookies 或者 yarn add vue-cookies 二.引入vue-cookie // 方式一:require ...

  10. Python 常见的错误类型和继承关系

    Python所有的错误都是从BaseException类派生 BaseException +-- SystemExit +-- KeyboardInterrupt +-- GeneratorExit ...