这题最开始是用 \(n^{4}\)的算法水过的,之后才想出的\(n^{3}\)正解。首先,\(n^{4}\) 应该是很容易想到的:设状态 \(f[i][j][k]\) 为有 \(i\) 个人,庄家为 \(j\) 号人时,第 \(k\) 个人胜出的概率。这样,只需要去掉本轮淘汰的人,加上 \(i - 1\) 个人时该人胜出的概率即可。

#include <bits/stdc++.h>
using namespace std;
#define maxn 55
#define db double
int n, m, a[maxn];
db P, f[maxn][maxn][maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int main()
{
n = read(), m = read();
P = (db) / (db) m;
for(int i = ; i <= m; i ++) a[i] = read();
f[][][] = ;
for(int i = ; i <= n; i ++)
for(int j = ; j <= i; j ++)
for(int k = ; k <= i; k ++)
{
for(int x = ; x <= m; x ++)
{
int t = (a[x] + j - ) % i, T = t + , K = k;
if(!t) t = i;
if(t == k) continue;
if(K > t) K -= ; if(T > t) T -= ;
f[i][j][k] += P * f[i - ][T][K];
}
}
for(int i = ; i <= n; i ++)
printf("%.2lf%% ", f[n][][i] * );
return ;
}

   但是这题还有更优的做法。我们再看一看自己所设置的状态,详加思考就会发现:其实第二维是不必要的。谁做庄家实际上都是一个相对的概念,我们可以强制让\(1\) 号为庄家,这样只需要在新的环上找出原来编号为 \(k\) 的人对应的新编号 \(k'\) 并加上其概率就好啦。

#include <bits/stdc++.h>
using namespace std;
#define maxn 55
#define db double
int n, m, a[maxn];
db P, f[maxn][maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int main()
{
n = read(), m = read();
P = (db) / (db) m;
for(int i = ; i <= m; i ++) a[i] = read();
f[][] = ;
for(int i = ; i <= n; i ++)
for(int k = ; k <= i; k ++)
for(int x = ; x <= m; x ++)
{
int t = a[x] % i, T = t + , K = k;
if(!t) t = i;
if(t == k) continue;
if(K > t) K -= ; if(T > t) T -= ;
if(K < T) K = (i - T + K);
else if(K > T) K = K - T + ;
else K = ;
f[i][k] += P * f[i - ][K];
}
for(int i = ; i <= n; i ++)
printf("%.2lf%% ", f[n][i] * );
return ;
}

【题解】JLOI2013卡牌游戏的更多相关文章

  1. [题解] [JLOI2013] 卡牌游戏

    题面 题解 概率dp, 应该做得还是比较少的 设\(f[i][j]\)为该圈有\(i\)人时, 第\(j\)个人最后胜利的概率 枚举选择第几张卡牌, 设其值为\(card[k]\), 那么被淘汰的则是 ...

  2. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  3. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  4. bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...

  5. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

  6. 【bzoj3191】[JLOI2013]卡牌游戏 概率dp

    题目描述 n个人围成一圈玩游戏,一开始庄家是1.每次从m张卡片中随机选择1张,从庄家向下数个数为卡片上的数的人,踢出这个人,下一个人作为新的庄家.最后一个人获胜.问每个人获胜的概率. 输入 第一行包括 ...

  7. 洛谷P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  8. [JLOI2013]卡牌游戏

    [题目描述 Description] N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡 ...

  9. [bzoj3191] [JLOI2013]卡牌游戏

    概率DP. 首先由题解可得>_<,胜出概率只与剩余人数.与庄家的相对位置有关. 所以设f[i][j]表示剩下i个人,从庄家开始第j个人的胜利概率... 根据卡牌一通乱搞即可... #inc ...

  10. bzoj 3191: [JLOI2013]卡牌游戏

    Description N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X ...

随机推荐

  1. centos7中vsftp的搭建

    开启vsftpd:service vsftpd start关闭vsftp:service vsftpd stop 安装vsftpd: yum -y install vsftpd 建立vsftpd帐号: ...

  2. haystack+Elasticsearch搜素引擎

    搜索引擎原理 通过搜索引擎进行数据查询时,搜索引擎并不是直接在数据库中进行查询,而是搜索引擎会对数据库中的数据进行一遍预处理,单独建立起一份索引结构数据. 我们可以将索引结构数据想象成是字典书籍的索引 ...

  3. MySQL数据库查看数据表占用空间大小和记录数

    MySQL数据库中每个表占用的空间.表记录的行数的话,可以打开MySQL的 information_schema 数据库.在该库中有一个 TABLES 表,这个表主要字段分别是: TABLE_SCHE ...

  4. PHP 十问

    1.为了保证精度,Mysql中存钱数的字段用什么类型?PHP怎么处理浮点数精度 decimal数据类型来存储钱: 浮点数的精度有限.尽管取决于系统,PHP 通常使用 IEEE 754 双精度格式,则由 ...

  5. php后端跨域Header头

    header("Access-Control-Allow-Origin: http://a.com"); // 允许a.com发起的跨域请求 //如果需要设置允许所有域名发起的跨域 ...

  6. input输入框类型

    输入大小写字母.数字.下划线: <input type="text" onkeyup="this.value=this.value.replace(/[^\w_]/ ...

  7. 嵌入式linux系统移植(一)

    内容:   交叉编译环境   bootloader功能子系统   内核核心子系统   文件系统子系统要点:  搭建交叉编译环境  bootloader的选择和移植  kernel的配置.编译.移植和调 ...

  8. Kubernetes-apiserver

    Kubernetes API服务器为API对象验证和配置数据,这些对象包含Pod.Service.ReplicationController等等.API Server提供REST操作以及前端到集群的共 ...

  9. linux execl()函数

    关于execl()函数族的用法不在赘述,其他博主介绍的很详细.下面说下作者在使用该函数时所犯的错误: 作者想通过使用execl()函数在子进程中调用其他函数,起初楼主是 这样用的: if((a = e ...

  10. Uber CEO博鳌论坛采访:看好中国市场共享经济的发展模式

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...