注意到模数被给出且非常小,做法肯定要依赖于一些与此相关的性质。找题解打表可以发现循环节长度的lcm不超过60。

  考虑怎么用线段树维护循环。对线段树上每个点维护这段区间的循环节、在循环中的位置,如果未进入环特殊记录;每次修改对于未进入环的暴力修改,已进入环的更新在循环节上的位置即可。对于修改经过的节点暴力重构循环节。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while (c==||c==||c==) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p,a[N];
int L[N<<],R[N<<],value[N<<][],len[N<<],pos[N<<],sum[N<<],lazy[N<<];
bool flag[N];
void up(int k)
{
int x=pos[k<<],y=pos[k<<|];
for (int i=;i<len[k];i++)
{
value[k][i]=value[k<<][x]+value[k<<|][y];
x=(x+)%len[k<<],y=(y+)%len[k<<|];
}
pos[k]=;
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r)
{
sum[k]=a[l];
int x=a[l];
while (!flag[x]) flag[x]=,x=x*x%p;
int y=a[l];
while (y!=x) pos[k]--,flag[y]=,y=y*y%p;
do
{
value[k][len[k]++]=y;
flag[y]=;
y=y*y%p;
}while (y!=x);
return;
}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
len[k]=len[k<<]*len[k<<|]/gcd(len[k<<],len[k<<|]);
pos[k]=min(pos[k<<],pos[k<<|]);
sum[k]=sum[k<<]+sum[k<<|];
if (pos[k]==) up(k);
}
void update(int k,int x){sum[k]=value[k][pos[k]=(pos[k]+x)%len[k]],lazy[k]+=x;}
void down(int k){update(k<<,lazy[k]),update(k<<|,lazy[k]),lazy[k]=;}
void modify(int k,int l,int r)
{
if (L[k]==l&&R[k]==r)
{
if (pos[k]>=) update(k,);
else if (L[k]==R[k]) sum[k]=sum[k]*sum[k]%p,pos[k]++;
else
{
pos[k]++;
if (lazy[k]) down(k);
modify(k<<,l,L[k]+R[k]>>);
modify(k<<|,(L[k]+R[k]>>)+,r);
sum[k]=sum[k<<]+sum[k<<|];
if (pos[k]==) up(k);
}
return;
}
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) modify(k<<,l,r);
else if (l>mid) modify(k<<|,l,r);
else modify(k<<,l,mid),modify(k<<|,mid+,r);
sum[k]=sum[k<<]+sum[k<<|];
if (pos[k]>=) up(k);
}
int query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return sum[k];
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) return query(k<<,l,r);
else if (l>mid) return query(k<<|,l,r);
else return query(k<<,l,mid)+query(k<<|,mid+,r);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4105.in","r",stdin);
freopen("bzoj4105.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),p=read();
for (int i=;i<=n;i++) a[i]=read();
build(,,n);
while (m--)
{
int op=read(),l=read(),r=read();
if (op==) modify(,l,r);
else printf("%d\n",query(,l,r));
}
return ;
}

BZOJ4105 THUSC2015平方运算(线段树)的更多相关文章

  1. BZOJ 4811 树链剖分+线段树

    思路: 感觉这题也可神了.. (还是我太弱) 首先发现每一位不会互相影响,可以把每一位分开考虑,然后用树链剖分或者LCT维护这个树 修改直接修改,询问的时候算出来每一位填0,1经过这条链的变换之后得到 ...

  2. BZOJ4105 [Thu Summer Camp 2015]平方运算 【线段树】

    题目链接 BZOJ4105 题解 平方操作orz,虽说应该是线段树,但是不会维护啊QAQ 小瞧一眼题解... 平方成环?环长\(lcm\)小于\(60\)? 果然还是打表找规律题.... 那就很好做了 ...

  3. 2018.10.18 bzoj4105: [Thu Summer Camp 2015]平方运算(线段树)

    传送门 线段树妙题. 显然平方几次就会循环(打表证明不解释). 然后所有环长度的lcmlcmlcm不大于70. 因此维护一下当前区间中的节点是否全部在环上. 不是直接暴力到叶子节点修改. 否则整体打标 ...

  4. ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】

     FZU 2105  Digits Count Time Limit:10000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  5. poj 3225 线段树+位运算

    略复杂的一道题,首先要处理开闭区间问题,扩大两倍即可,注意输入最后要\n,初始化不能随便memset 采用线段树,对线段区间进行0,1标记表示该区间是否包含在s内U T S ← S ∪ T 即将[l, ...

  6. A Corrupt Mayor's Performance Art(线段树区间更新+位运算,颜色段种类)

    A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100 ...

  7. 洛谷3822 [NOI2017] 整数 【线段树】【位运算】

    题目分析: 首先这题的询问和位(bit)有关,不难想到是用线段树维护位运算. 现在我们压32位再来看这道题. 对于一个加法操作,它的添加位置可以得到,剩下的就是做不超过32的位移.这样根据压位的理论. ...

  8. hdu 5023 线段树+位运算

    主要考线段树的区间修改和区间查询,这里有一个问题就是这么把一个区间的多种颜色上传给父亲甚至祖先节点,在这里题目告诉我们最多30颜色,那么我们可以把这30中颜色用二进制储存和传给祖先节点,二进制的每一位 ...

  9. poj 2777 Count Color - 线段树 - 位运算优化

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 42472   Accepted: 12850 Description Cho ...

随机推荐

  1. 23种java设计模式之装饰者模式及动态代理

    设计模式不管对于何种语言都是存在的,这里介绍的是java的模式 装饰者模式是在二次开发中应用比较多的一款模式,当然了用反射也是可以实现的,今天介绍的是装饰模式,有兴趣的朋友可以自己去了解一下反射是怎么 ...

  2. Xcode升到7.1插件失效解决方法

    Mac前段时间下载了新的OS系统与Xcode 7.1,然而在使用Xcode 7.1时,发现插件不能用了,瞬间木有爱了,正好交流群里有人问到了插件失效的问题,经过各路大神的神通最终用下面这种方法完美解决 ...

  3. EpiiAdmin 开源的php交互性管理后台框架, 让复杂的交互变得更简单!Phper快速搭建交互性平台的开发框架,基于Thinkphp5.1+Adminlte3.0+Require.js。

    EpiiAdmin EpiiAdmin php开源交互性管理后台框架,基于Thinkphp5.1+Adminlte3.0+Require.js, 让复杂的交互变得更简单!Phper快速搭建交互性平台的 ...

  4. SHELL里执行HIVE导出文件处理成CSV文件

    #!/bin/bash #用途: #.当前目录的txt文件批量转csv #.制表符转逗号分隔符 #.NULL去除 #.删除WARN警告 for i in `ls ./*.txt` do sed -e ...

  5. Python学习 :文件操作

    文件基本操作流程: 一. 创建文件对象 二. 调用文件方法进行操作 三. 关闭文件(注意:只有在关闭文件后,才会写入数据) fh = open('李白诗句','w',encoding='utf-8') ...

  6. 什么是mysql数据库安全 简单又通俗的mysql库安全简介

    首先我们要了解一下什么是mysql数据库,mysql是目前网站以及APP应用上用的较多的一个开源的关系型数据库系统,可以对数据进行保存,分段化的数据保存,也可以对其数据进行检索,查询等功能的数据库. ...

  7. 二维数组快速排序(sort+qsort)

    二维数组快速排序 qsort是c中快速排序,如果简单的一维数组排序,想必大家的懂.现在看一下二维数组的排序,虽然可以冒泡但是太费时间了,我们这里使用qsort来快速排序,看代码应该看得懂吧. 代码: ...

  8. 单调队列优化dp

    洛谷p3800(单调队列优化DP) 题目背景 据说在红雾异变时,博丽灵梦单身前往红魔馆,用十分强硬的手段将事件解决了. 然而当时灵梦在Power达到MAX之前,不具有“上线收点”的能力,所以她想要知道 ...

  9. python的初体验

    最近由于毕业答辩,导致一些博客没有更新,见谅,今天我们开始一些新的内容 1.python的注释 单行注释:# 多行注释: ''' 这是多行注释 我们可以在里面写很多很多的行 ''' 2.编码风格 #c ...

  10. WPF DateTimePicker 和 TimeSpanPicker 控件发布

    原文:WPF DateTimePicker 和 TimeSpanPicker 控件发布 根据http://datetimepickerwpf.codeplex.com/ 这个项目重构了一下代码设计了我 ...