CPU 和 GPU 的区别
链接:https://www.zhihu.com/question/19903344/answer/96081382
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。
于是CPU和GPU就呈现出非常不同的架构(示意图):
<img src="https://pic2.zhimg.com/918367f36e34c18dc1f92bd16760dae1_b.jpg" data-rawwidth="353" data-rawheight="136" class="content_image" width="353">
图片来自nVidia CUDA文档。其中绿色的是计算单元,橙红色的是存储单元,橙黄色的是控制单元。
GPU采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache。而CPU不仅被Cache占据了大量空间,而且还有有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU很小的一部分
<img src="https://pic2.zhimg.com/894e6d2f20921e7c8be985bbb0dac5d5_b.png" data-rawwidth="1017" data-rawheight="487" class="origin_image zh-lightbox-thumb" width="1017" data-original="https://pic2.zhimg.com/894e6d2f20921e7c8be985bbb0dac5d5_r.png">
从上图可以看出:
Cache, local memory: CPU > GPU
Threads(线程数): GPU > CPU
Registers: GPU > CPU 多寄存器可以支持非常多的Thread,thread需要用到register,thread数目大,register也必须得跟着很大才行。
SIMD Unit(单指令多数据流,以同步方式,在同一时间内执行同一条指令): GPU > CPU。
CPU 基于低延时的设计:
<img src="https://pic3.zhimg.com/7e4a25ee38ec4e194d3424edb000d526_b.png" data-rawwidth="1190" data-rawheight="499" class="origin_image zh-lightbox-thumb" width="1190" data-original="https://pic3.zhimg.com/7e4a25ee38ec4e194d3424edb000d526_r.png">
CPU有强大的ALU(算术运算单元),它可以在很少的时钟周期内完成算术计算。
当今的CPU可以达到64bit 双精度。执行双精度浮点源算的加法和乘法只需要1~3个时钟周期。
CPU的时钟周期的频率是非常高的,达到1.532~3gigahertz(千兆HZ, 10的9次方).
大的缓存也可以降低延时。保存很多的数据放在缓存里面,当需要访问的这些数据,只要在之前访问过的,如今直接在缓存里面取即可。
复杂的逻辑控制单元。当程序含有多个分支的时候,它通过提供分支预测的能力来降低延时。
数据转发。 当一些指令依赖前面的指令结果时,数据转发的逻辑控制单元决定这些指令在pipeline中的位置并且尽可能快的转发一个指令的结果给后续的指令。这些动作需要很多的对比电路单元和转发电路单元。
<img src="https://pic3.zhimg.com/654c7ff0a711e8e0740e33a9b0c17bb2_b.png" data-rawwidth="1215" data-rawheight="503" class="origin_image zh-lightbox-thumb" width="1215" data-original="https://pic3.zhimg.com/654c7ff0a711e8e0740e33a9b0c17bb2_r.png">
GPU是基于大的吞吐量设计。
GPU的特点是有很多的ALU和很少的cache. 缓存的目的不是保存后面需要访问的数据的,这点和CPU不同,而是为thread提高服务的。如果有很多线程需要访问同一个相同的数据,缓存会合并这些访问,然后再去访问dram(因为需要访问的数据保存在dram中而不是cache里面),获取数据后cache会转发这个数据给对应的线程,这个时候是数据转发的角色。但是由于需要访问dram,自然会带来延时的问题。
GPU的控制单元(左边黄色区域块)可以把多个的访问合并成少的访问。
GPU的虽然有dram延时,却有非常多的ALU和非常多的thread. 为啦平衡内存延时的问题,我们可以中充分利用多的ALU的特性达到一个非常大的吞吐量的效果。尽可能多的分配多的Threads.通常来看GPU ALU会有非常重的pipeline就是因为这样。
所以与CPU擅长逻辑控制,串行的运算。和通用类型数据运算不同,GPU擅长的是大规模并发计算,这也正是密码破解等所需要的。所以GPU除了图像处理,也越来越多的参与到计算当中来。
GPU的工作大部分就是这样,计算量大,但没什么技术含量,而且要重复很多很多次。就像你有个工作需要算几亿次一百以内加减乘除一样,最好的办法就是雇上几十个小学生一起算,一人算一部分,反正这些计算也没什么技术含量,纯粹体力活而已。而CPU就像老教授,积分微分都会算,就是工资高,一个老教授资顶二十个小学生,你要是富士康你雇哪个?GPU就是这样,用很多简单的计算单元去完成大量的计算任务,纯粹的人海战术。这种策略基于一个前提,就是小学生A和小学生B的工作没有什么依赖性,是互相独立的。很多涉及到大量计算的问题基本都有这种特性,比如你说的破解密码,挖矿和很多图形学的计算。这些计算可以分解为多个相同的简单小任务,每个任务就可以分给一个小学生去做。但还有一些任务涉及到“流”的问题。比如你去相亲,双方看着顺眼才能继续发展。总不能你这边还没见面呢,那边找人把证都给领了。这种比较复杂的问题都是CPU来做的。
总而言之,CPU和GPU因为最初用来处理的任务就不同,所以设计上有不小的区别。而某些任务和GPU最初用来解决的问题比较相似,所以用GPU来算了。GPU的运算速度取决于雇了多少小学生,CPU的运算速度取决于请了多么厉害的教授。教授处理复杂任务的能力是碾压小学生的,但是对于没那么复杂的任务,还是顶不住人多。当然现在的GPU也能做一些稍微复杂的工作了,相当于升级成初中生高中生的水平。但还需要CPU来把数据喂到嘴边才能开始干活,究竟还是靠CPU来管的。
什么类型的程序适合在GPU上运行?
(1)计算密集型的程序。所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比,读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD, 也实在是太慢了。
(2)易于并行的程序。GPU其实是一种SIMD(Single Instruction Multiple Data)架构, 他有成百上千个核,每一个核在同一时间最好能做同样的事情。
CPU 和 GPU 的区别的更多相关文章
- cpu和gpu的区别和联系是什么
cpu和gpu的区别和联系是什么 一.总结 一句话总结:CPU:复杂任务,核少,做串行,计算能力只是CPU很小的一部分,处理复杂逻辑: GPU:简单任务,核多,做并行(大吞吐量),做显卡的图象单元计算 ...
- 浅谈CPU和GPU的区别
导读: CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的.相互无依赖的大规模数据 ...
- CPU和GPU的区别
个人认为CPU和GPU各有自己的适应领域.CPU(Central Processing Unit)计算核心较少,通常是双核.四核.八核,但是拥有大量的共享缓存.预测.乱序执行等优化,可以做逻辑非常复杂 ...
- CPU和GPU的差别
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt317 首先需要解释CPU和GPU这两个缩写分别代表什么.CPU即中央处理器, ...
- CPU与GPU,我们应该使用哪个?
CPU与GPU,我们应该使用哪个? CPU与GPU CPU即中央处理器,GPU即图形处理器. 两者的相同之处:两者都有总线和外界联系,有自己的缓存体系,以及数字和逻辑运算单元 两者的区别之处:在于存在 ...
- CPU与GPU区别大揭秘
http://blog.csdn.net/xiaolang85/article/details/51500340 有网友在网上提问:“为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚至破解 ...
- CPU与GPU区别 通俗易懂
转:https://blog.csdn.net/xiaolang85/article/details/51500340 有网友在网上提问:“为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚 ...
- 谈谈IC、ASIC、SoC、MPU、MCU、CPU、GPU、DSP、FPGA、CPLD
IC (integrated circuit) 集成电路:微电路.微芯片.芯片:集成电路又分成:模拟集成电路(线性电路).数字集成电路.数/模混合集成电路: 模拟集成电路:产生.放大.处理各种模拟信号 ...
- Unity 渲染流水线 :CPU与GPU合作创造的艺术wfd
前言 对于Unity渲染流程的理解可以帮助我们更好对Unity场景进行性能消耗的分析,进而更好的提升场景渲染的效率,最后提升游戏整体的性能表现 Unity的游戏画面的最终的呈现是由CPU与GPU相互配 ...
随机推荐
- bootstrap+css进行页面布局
效果 用到了bootstrap中的表格css.圆形css.以及上一页下一页css. 布局页面,填充数据,实现js动态效果(比如点击下一页,上一页),逐步完善. 不仅仅要会使用bootstrap中的样式 ...
- Sql Server优化之路
本文只限coder级别层次上对Sql Server的优化处理简结,为防止专业DB人士有恶心.反胃等现象,请提前关闭此页面. 首先得有一个测试库,使用数据生成计划生成测试数据库(参考:http://de ...
- Java面向对象-面向对象编程之基本概念
面向对象这个概念,每本书上的说法定义很多. 我自己根据我的经验,自己归档总结了下, 所谓面向对象,就是 以基于对象的思维去分析和解决问题,万物皆对象: 面向对象经常和面向过程放一起讨论: 这里举例, ...
- MAPREDUCE的实战案例
reduce端join算法实现 1.需求: 订单数据表t_order: id date pid amount 1001 20150710 P0001 2 1002 20150710 P0001 3 1 ...
- 深入剖析SolrCloud(二)
作者:洞庭散人 出处:http://phinecos.cnblogs.com/ 本博客遵从Creative Commons Attribution 3.0 License,若用于非商业目的,您可以自由 ...
- zookeeper集群安装的奇怪现象
zookeeper:配置的集群信息是domain:端口2888:端口3888: domain为内网静态ip:每次启动都不能相互连接报错误: [myid:3] - WARN [WorkerSende ...
- codeforce 459DIV2 C题
题意 一串括号字符串,里面存在一些‘?’,其中‘?’既可以当作 '(' 又可以当作 ')' ,计算有多少对(l,r),在s中[sl,s(l+1),s(l+2),.....sr],内的括号是匹配的.n= ...
- PHP配置数据库XML文件
<?php $doc=new DOMDocument('1.0','utf-8'); //new一个dom对象 $doc->load("config.xml"); 加载 ...
- 网页开发中调用iframe中的函数或者是dom元素
iframe中的代码 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <hea ...
- 447. Number of Boomerangs 回力镖数组的数量
[抄题]: Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple ...