[bzoj2038][2009国家集训队]小Z的袜子(hose)——莫队算法
Brief Description
给定一个序列,您需要处理m个询问,每个询问形如[l,r],您需要回答在区间[l,r]中任意选取两个数相同的概率。
Algorithm Design
莫队算法入门题目。
这篇博客讲的不错
对于L,R的询问。设袜子的个数为\(cnt_i\)
那么答案即为$$\frac{\sum_i C_{cnt}^2}{\frac{(R-L+1)(R-L)}{2}}$$
其中\(C_n^m\)为组合数。
化简得:$$\frac{\sum_i cnt^2 -(R-L+1)}{(R-L+1)(R-L)}$$
所以这道题目的关键是求一个区间内每种颜色数目的平方和。
如果你知道了[L,R]的答案。你可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案的话。就可以使用莫队算法。
对于莫队算法我感觉就是暴力。只是预先知道了所有的询问。可以合理的组织计算每个询问的顺序以此来降低复杂度。要知道我们算完[L,R]的答案后现在要算[L',R']的答案。由于可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案.所以计算[L',R']的答案花的时间为|L-L'|+|R-R'|。如果把询问[L,R]看做平面上的点a(L,R).询问[L',R']看做点b(L',R')的话。那么时间开销就为两点的曼哈顿距离。所以对于每个询问看做一个点。我们要按一定顺序计算每个值。那开销就为曼哈顿距离的和。要计算到每个点。那么路径至少是一棵树。所以问题就变成了求二维平面的最小曼哈顿距离生成树。
关于二维平面最小曼哈顿距离生成树。感兴趣的可以参考胡泽聪大佬的这篇文章
这样只要顺着树边计算一次就ok了。可以证明时间复杂度为\(n* \sqrt n\)。
但是这种方法编程复杂度稍微高了一点。所以有一个比较优雅的替代品。那就是先对序列分块。然后对于所有询问按照L所在块的大小排序。如果一样再按照R排序。然后按照排序后的顺序计算。为什么这样计算就可以降低复杂度呢。
一、i与i+1在同一块内,r单调递增,所以r是O(n)的。由于有n0.5块,所以这一部分时间复杂度是n1.5。
二、i与i+1跨越一块,r最多变化n,由于有n0.5块,所以这一部分时间复杂度是n1.5
三、i与i+1在同一块内时变化不超过n0.5,跨越一块也不会超过2*n0.5,不妨看作是n0.5。由于有n个数,所以时间复杂度是n1.5
于是就变成了\(\Theta(n^{1.5})\)了。
Code
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
const int maxn = 50010;
#define ll long long
ll num[maxn], up[maxn], dw[maxn], ans, aa, bb, cc;
int col[maxn], pos[maxn];
struct qnode {
int l, r, id;
} qu[maxn];
bool cmp(qnode a, qnode b) {
if (pos[a.l] == pos[b.l])
return a.r < b.r;
else
return pos[a.l] < pos[b.l];
}
ll gcd(ll x, ll y) {
ll tp;
while ((tp = x % y)) {
x = y;
y = tp;
}
return y;
}
void update(int x, int d) {
ans -= num[col[x]] * num[col[x]];
num[col[x]] += d;
ans += num[col[x]] * num[col[x]];
}
int main() {
int n, m, bk, pl, pr, id;
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
scanf("%d %d", &n, &m);
memset(num, 0, sizeof(num));
bk = ceil(sqrt(1.0 * n));
for (int i = 1; i <= n; i++) {
scanf("%d", &col[i]);
pos[i] = (i - 1) / bk;
}
for (int i = 0; i < m; i++) {
scanf("%d %d", &qu[i].l, &qu[i].r);
qu[i].id = i;
}
std::sort(qu, qu + m, cmp);
pl = 1, pr = 0;
ans = 0;
for (int i = 0; i < m; i++) {
id = qu[i].id;
if (qu[i].l == qu[i].r) {
up[id] = 0, dw[id] = 1;
continue;
}
if (pr < qu[i].r) {
for (int j = pr + 1; j <= qu[i].r; j++)
update(j, 1);
} else {
for (int j = pr; j > qu[i].r; j--)
update(j, -1);
}
pr = qu[i].r;
if (pl < qu[i].l) {
for (int j = pl; j < qu[i].l; j++)
update(j, -1);
} else {
for (int j = pl - 1; j >= qu[i].l; j--)
update(j, 1);
}
pl = qu[i].l;
aa = ans - qu[i].r + qu[i].l - 1;
bb = (ll)(qu[i].r - qu[i].l + 1) * (qu[i].r - qu[i].l);
cc = gcd(aa, bb);
aa /= cc, bb /= cc;
up[id] = aa, dw[id] = bb;
}
for (int i = 0; i < m; i++)
printf("%lld/%lld\n", up[i], dw[i]);
}
[bzoj2038][2009国家集训队]小Z的袜子(hose)——莫队算法的更多相关文章
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3577 Solved: 1652[Subm ...
- [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 10299 Solved: 4685[Sub ...
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法
要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- 【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法
原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终 ...
- bzoj2038: [2009国家集训队]小Z的袜子(hose) [莫队]
Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...
- BZOJ2038[2009国家集训队]小Z的袜子(hose)——莫队
题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜子从1到N编号 ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
随机推荐
- python内置模块[re]
python内置模块[re] re模块: python的re模块(Regular Expression正则表达式)提供各种正则表达式的匹配操作,在文本解析.复杂字符串分析和信息提取时是一个非常有用的工 ...
- LeetCode题目解答
LeetCode题目解答——Easy部分 Posted on 2014 年 11 月 3 日 by 四火 [Updated on 9/22/2017] 如今回头看来,里面很多做法都不是最佳的,有的从复 ...
- VIN码识别:助力汽车后市场转型升级
随着中国汽车市场的成熟,汽车后市场发展迅速,呈“井喷”式增长.据最新数据统计,2015年,中国汽车后市场产值突破8000亿规模,到2018年有望突破万亿. 所谓汽车后市场是指汽车销售以后,围绕汽车使用 ...
- mysql数据备份和还原
MySQL是一个永久存储数据的数据库服务器.如果使用MySQLServer,那么需要创建数据库备份以便从崩溃中恢复.mysql提供了一个用于备份的实用程序mysqldump. 1.普通.sql文件中的 ...
- js把字符串格式的时间转换成几秒前、几分钟前、几小时前、几天前等格式
最近在做项目的时候,需要把后台返回的时间转换成几秒前.几分钟前.几小时前.几天前等的格式:后台返回的时间格式为:2015-07-30 09:36:10,需要根据当前的时间与返回的时间进行对比,最后显示 ...
- ui-grid表格怎么实现内容居中
这次是思想落后了,只关注怎么使用原生的ui-grid样式来实现这一需求,后来发现可以通过此列的cellTemplate来为列指定内容,从而可以使用css调整样式. ps:其实有时候换种思路,豁然开朗. ...
- redis集群如何清理前缀相同的key
最近经常收到redis集群告警,每天收到50多封邮件,实在不胜其烦,内存不够用,原因是有一些无用的key(约3000万)占用内存(具体不说了).这部分内存不能被释放. 原来的定期清理脚本的逻辑: 打开 ...
- Java IO 之 RandomAccessFile 操作文件内容
RandomAccessFile类实现对文件内容的随机读写 文件内容的随机操作,重难点在于字符操作,具体查看API package org.zln.io.file; import java.io.IO ...
- setCharacterEncoding 是在request.getParameter获取参数之前 设置request的编码格式 一步到位
setCharacterEncoding 是在request.getParameter获取参数之前 设置request的编码格式 一步到位
- BZOJ4557 JLOI2016侦察守卫(树形dp)
下称放置守卫的点为监控点.设f[i][j]为i子树中深度最大的未被监视点与i的距离不超过j时的最小代价,g[i][j]为i子树中距离i最近的监控点与i的距离不超过j且i子树内点全部被监视时的最小代价. ...