首先我们知道,正方形内个是对称的,关于y=x对称,所以只需要算出来一半的人数

然后乘2+1就行了,+1是(1,1)这个点

开始我先想的递推

那么我们对于一半的三角形,一列一列的看,假设已经求好了第I-1列的,那么第I列加上

之后,不会影响前I-1列能看见的人,那么第I列一共加上I个人,设坐标是(I,Y),

我们可以发现如果gcd(I,Y)<>1的时候这个点是看不见的,因为横纵坐标存在约数,也就是

前面有一个整点点和这个点还有原点在同一直线上(三角形相似),那么我们要找第I列I,Y互质的

点,也就是和I互质的点的个数,也就是phi(i),那么就不用递推了,我们每个I都要累加phi,也就是

生成1-n-1的欧拉函数表就行了(n-1是因为(0,0)点算第1列,我就在这儿WA了一次。。。)

/**************************************************************
    Problem:
    User: BLADEVIL
    Language: Pascal
    Result: Accepted
    Time: ms
    Memory: kb
****************************************************************/
 
//By BLADEVIL
var
    i, j                        :longint;
    n                           :longint;
    phi, mindiv                 :array[..] of longint;
    prime                       :array[..] of longint;
    ans                         :int64;
     
begin
    read(n);
    for i:= to n do
    begin
        if mindiv[i]= then
        begin
            mindiv[i]:=i;
            inc(prime[]);
            prime[prime[]]:=i;
            phi[i]:=i-;
        end;
        for j:= to prime[] do
        begin
            if prime[j]*i>n then break;
            if i mod prime[j]<> then
                phi[i*prime[j]]:=phi[i]*(prime[j]-) else
                phi[i*prime[j]]:=phi[i]*prime[j];
            mindiv[prime[j]*i]:=prime[j];
            if i mod prime[j]= then break;
        end;
    end;
    phi[]:=;
    for i:= to n- do ans:=ans+phi[i];
    ans:=ans*+;
    writeln(ans);
end.

bzoj 2190 线性生成欧拉函数表的更多相关文章

  1. UVa 11426 - GCD - Extreme (II) 转化+筛法生成欧拉函数表

    <训练指南>p.125 设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n); 则所求答案为S[n] = f[2]+f[3]+……+f[n] ...

  2. 【欧拉函数表】POJ2478-Farey Sequence

    [题目大意] 求∑φ(i)(1<=i<=N). [思路] 欧拉函数具有如下的重要推论: 当b是素数时 性质①若b|a,有φ(ab)=φ(a)*b: 性质②若b不|a,有φ(ab)=φ(a) ...

  3. UVA - 11426 欧拉函数(欧拉函数表)

    题意: 给一个数 N ,求 N 范围内所有任意两个数的最大公约数的和. 思路: f 数组存的是第 n 项的 1~n-1 与 n 的gcd的和,sum数组存的是 f 数组的前缀和. sum[n]=f[1 ...

  4. bzoj 2190 仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2245  Solved: 1413[Submit][Statu ...

  5. BZOJ 2190仪仗队【欧拉函数】

    问题的唯一难点就是如何表示队长能看到的人数?如果建系,队长所在的点为(0,0)分析几组数据就一目了然了,如果队长能看到的点为(m,n),那么gcd(m,n)=1即m n 互质或者是(0,1),(1,0 ...

  6. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  7. The Euler function(线性筛欧拉函数)

    /* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...

  8. [bzoj 2190][SDOI2008]仪仗队(线性筛欧拉函数)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 分析:就是要线性筛出欧拉函数... 直接贴代码了: memset(ans,,sizeof ...

  9. BZOJ 2190 仪仗队(线性筛欧拉函数)

    简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...

随机推荐

  1. 【JS笔记】闭包

    首先看执行环境和作用域的概念.执行环境定义了变量或函数有权访问的其他数据,决定它们的行为,每个执行环境都有一个与其关联的变量对象,保存执行环境中定义的变量.当代码在一个环境中执行时,会创建变量对象的一 ...

  2. 发布npm包 登录报错 E409 Conflict

    1.到官网注册个账号,并且验证完邮箱:https://www.npmjs.com/ 2.打开cmd命令行 登录:$npm login 根据提示 一步步完成登录. 3.新建一个项目文件夹: npmtes ...

  3. OpenCV入门:(六:基础画图函数)

    有时程序中需要画一些基础的图形,例如直线,矩形,椭圆以及多边形.OpenCV中当然有此类函数. 1.函数介绍 直线line: , , ) img – 图像 pt1 – 直线起点 pt2 – 直线终点 ...

  4. C#调用C++编写的dll

    界面还是C#写的方便点,主要是有一个可视化的编辑器,不想画太多的时间在界面上.但是自己又对C++了解的多一些,所以在需要一个良好的界面的情况下,使用C++来写代码逻辑,将其编译成一个dll,然后用C# ...

  5. 【性能调优】一次关于慢查询及FGC频繁的调优经历

    以下来分享一个关于MySQL数据库慢查询和FGC频繁的性能案例. 一.系统架构 一个简单的dubbo服务,服务提供者提供接口,并且提供接口的实现,提供方注册服务到Zookeeper注册中心,然后消费者 ...

  6. shell及Python爬虫实例展示

    1.shell爬虫实例: [root@db01 ~]# vim pa.sh #!/bin/bash www_link=http://www.cnblogs.com/clsn/default.html? ...

  7. Python不同进制之间的转换

    不同的进制 二进制    0b101 以数字0和字母b打头的表示二进制数 如果出现大于等于2的数 会抛出SyntaxError异常 八进制    0711 以数字0打头的数字表示八进制数 如果出现大于 ...

  8. SQL SERVER 查询语句学习:CHARINDEX

    场景介绍 项目A需要一个批量删除的功能,之前我一直用SqlTransaction去处理,今天同事告诉我可以用CHARINDEX函数去解决问题,因此我今天就研究了一下. SQL语句 ---定义要删除的数 ...

  9. 权限管理UML设计草图

    PS:  最近闲来无事,打算整一个权限管理模块.然而UML我只会看不会设计,现在的草图都是边学边做的,现在发出来,希望前辈们指点一二!先拜谢了! 搞开发也有2年多快三年了,我感觉自己基本上还是一个菜鸟 ...

  10. 条件查询Criteria

    public User getUserByNameCri(String name){ Session session = null; User user = null; try { session = ...