Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 1161  Solved: 694
[Submit][Status][Discuss]

Description

暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题。由于地上露营湿气重,必须选择在高处的树屋露营。小龙分配的树屋建立在一颗高度为N+1尺(N为正整数)的大树上,正当他发愁怎么爬上去的时候,发现旁边堆满了一些空心四方钢材(如图1.1),经过观察和测量,这些钢材截面的宽和高大小不一,但都是1尺的整数倍,教官命令队员们每人选取N个空心钢材来搭建一个总高度为N尺的阶梯来进入树屋,该阶梯每一步台阶的高度为1尺,宽度也为1尺。如果这些钢材有各种尺寸,且每种尺寸数量充足,那么小龙可以有多少种搭建方法?(注:为了避免夜里踏空,钢材空心的一面绝对不可以向上。)

以树屋高度为4尺、阶梯高度N=3尺为例,小龙一共有如图1.2所示的5种

搭 建方法:

Input

一个正整数 N(1≤N≤500),表示阶梯的高度

Output

一个正整数,表示搭建方法的个数。(注:搭建方法个数可能很大。)

Sample Input

3

Sample Output

5

HINT

1  ≤N≤500

题意完全没看懂,,,果然是我太弱了(又弱又懒→_→)

就以样例3层为例

可以将阶梯分为两部分,前两层和最后一层,而前两层的方案数是当n为2时,即f[2]

于是变成了f[0]*f[2]+f[2]*f[0]

还剩下一个大正方体填充(也就是图示的第三种)

这时,实际上将阶梯隔成了两块,最高层和最底层,他们的方案数都是f[1],于是为f[1]*f[1]

综上,f[3]=f[2]*f[0]+f[1]*f[1]+f[0]*f[2]

好像Catalan数列啊。。。

懒得分解质因数,直接上单精乘、单精除(果然又弱又懒

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iomanip>
using namespace std; const int MAXN=;
const int DLEN=;
const int WIDE=;
class BigNum
{
public:
int NUM[MAXN];
int L;
bool flag;
BigNum(){memset(NUM,,sizeof(NUM));L=;flag=;}
BigNum(const BigNum &T){memcpy(NUM,T.NUM,sizeof(NUM));L=T.L;flag=T.flag;}
BigNum(int n){memset(NUM,,sizeof(NUM));NUM[]=n;L=;while(NUM[L-]>=WIDE){NUM[L]+=NUM[L-]/WIDE;NUM[L-]%=WIDE;L++;}flag=;}
}; void Output(const BigNum T)
{
if(T.flag==) cout<<'-';
cout<<T.NUM[T.L-];
for(int i=T.L-;i>=;i--)
{
cout.width(DLEN);
cout.fill('');
cout<<T.NUM[i];
}
} BigNum Mult(const BigNum A,int B)
{
BigNum C(A);
int i,tmp,k=;
for(i=;i<C.L||k;i++)
{
tmp=C.NUM[i]*B+k;
k=tmp/WIDE;
C.NUM[i]=tmp%WIDE;
}
C.L=i;
return C;
} BigNum Div(const BigNum A,int B)
{
BigNum C(A);
int k=;
for(int i=C.L-;i>=;i--)
{
k=k*WIDE+C.NUM[i];
C.NUM[i]=k/B;
k%=B;
}
while(C.NUM[C.L-]==) C.L--;
return C;
} int n; int main()
{
scanf("%d",&n);
BigNum A();
for(int i=;i<=n;i++)
A=Div(Mult(A,*i-),i+);
Output(A);
return ;
}

2822: [AHOI2012]树屋阶梯的更多相关文章

  1. BZOJ 2822: [AHOI2012]树屋阶梯 [Catalan数 高精度]

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 779  Solved: 453[Submit][Status] ...

  2. 【BZOJ 2822】2822: [AHOI2012]树屋阶梯(卡特兰数+高精度)

    2822: [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处 ...

  3. BZOJ 2822: [AHOI2012]树屋阶梯

    Description 求拼成阶梯状的方案数. Sol 高精度+Catalan数. 我们可以把最后一行无线延伸,所有就很容易看出Catalan数了. \(f_n=f_0f_{n-1}+f_1f_{n- ...

  4. bzoj 2822 [AHOI2012]树屋阶梯 卡特兰数

    因为规定n层的阶梯只能用n块木板 那么就需要考虑,多出来的一块木板往哪里放 考虑往直角处放置新的木板 不管怎样,只有多的木板一直扩展到斜边表面,才会是合法的新状态,发现,这样之后,整个n层阶梯就被分成 ...

  5. bzoj2822[AHOI2012]树屋阶梯(卡特兰数)

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 879  Solved: 513[Submit][Status] ...

  6. [AHOI2012]树屋阶梯 题解(卡特兰数)

    [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营. ...

  7. 洛谷P2532 [AHOI2012]树屋阶梯(Catalan数)

    P2532 [AHOI2012]树屋阶梯 题目描述 输入输出格式 输入格式: 一个正整数N(1<=N<=500),表示阶梯的高度. 输出格式: 一个正整数,表示搭建方法的个数.(注:搭建方 ...

  8. P2532 [AHOI2012]树屋阶梯

    题目:P2532 [AHOI2012]树屋阶梯 思路: 打表之后不难看出是裸的Catalan数.简单证明一下: 对于任意一种合法方案,都可以表示为在左下角先放一个\(k*(n+1-k),k\in[1, ...

  9. 【BZOJ 2822】[AHOI2012]树屋阶梯 卡特兰数+高精

    这道题随便弄几个数就发现是卡特兰数然而为什么是呢? 我们发现我们在增加一列时,如果这一个东西(那一列)他就一格,那么就是上一次的方案数,并没有任何改变,他占满了也是,然后他要是占两格呢,就是把原来的切 ...

随机推荐

  1. oracle学习篇十一:视图

    视图是存储的查询定义. 1. 创建视图的语法如下: Create [OR REPLACE] [FORCE | NOFORCE] VIEW view_name[(alias,alias,...)] AS ...

  2. vue1.0 与 Vue2.0的一些区别 及用法

    1.Vue2.0的模板标记外必须使用元素包起来: eg:Vue1.0的写法 <!DOCTYPE html> <html> <head> <meta chars ...

  3. 02_SimpleTrigger

    [SimpleTrigger的构造方法] SimpleTrigger(String name,String group); //指定Trigger的所属组 和 名称 SimpleTrigger(Str ...

  4. 【Linux】Linux远程登陆

    登录任务 Windows主机--远程登录--Linux主机 一.登陆前提准备 1.1 确保网络通畅 确保从Windows 能够Ping通Linux 1.2 关闭Linux防火墙 //前提:以root管 ...

  5. GridCellChoiceEditor

    choice_editor = wx.grid.GridCellChoiceEditor(choices_list, True) grid.SetCellEditor(row, col, choice ...

  6. 自整定模糊PID算法的理论

    模糊控制系统的构成与与常规的反馈控制系统的主要区别在于控制器主要是由模糊化,模糊推理机和精确化三个功能模块和知识库(包括数据库和规则库)构成的.具体实现过程如下所示: (1)预处理: 输入数据往往是通 ...

  7. HCNA修改OSPF基准带宽

    1.拓扑图 2.R1配置ip开启OSPF The device is running! <Huawei>sysEnter system view, return user view wit ...

  8. Android(java)学习笔记43:Map集合的遍历之键找值

    1. Map集合的遍历之键找值  package cn.itcast_01; import java.util.HashMap; import java.util.Map; import java.u ...

  9. 【[NOI2018]你的名字】

    题目 可能是一个乱搞做法,同时也跪求有人能帮我分析一下复杂度 还是先来看比较简单的\(68pts\),也就是\(l=1,r=|S|\)的情况 我们可以直接把\(S\)串和所有的\(T\)串一起建一个广 ...

  10. Reverse Polish notation

    Reverse Polish notation is a notation where every operator follows all of its operands. For example, ...