转自http://blog.csdn.net/gabriel1026/article/details/6311339

  平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它通过旋转不平衡的节点来使二叉树重新保持平衡,并且查找、插入和删除操作在平均和最坏情况下时间复杂度都是O(log n)

AVL树的旋转一共有四种情形,注意所有旋转情况都是围绕着使得二叉树不平衡的第一个节点展开的。

1. LL型

平衡二叉树某一节点的左孩子的左子树上插入一个新的节点,使得该节点不再平衡。这时只需要把树向右旋转一次即可,如图所示,原A的左孩子B变为父结点,A变为其右孩子,而原B的右子树变为A的左子树,注意旋转之后Brh是A的左子树(图上忘在A于Brh之间标实线)

 

2. RR型

平衡二叉树某一节点的右孩子的右子树上插入一个新的节点,使得该节点不再平衡。这时只需要把树向左旋转一次即可,如图所示,原A右孩子B变为父结点,A变为其左孩子,而原B的左子树Blh将变为A的右子树。

3. LR型

平衡二叉树某一节点的左孩子的右子树上插入一个新的节点,使得该节点不再平衡。这时需要旋转两次,仅一次的旋转是不能够使二叉树再次平衡。如图所示,在B节点按照RR型向左旋转一次之后,二叉树在A节点仍然不能保持平衡,这时还需要再向右旋转一次。

4. RL型

平衡二叉树某一节点的右孩子的左子树上插入一个新的节点,使得该节点不再平衡。同样,这时需要旋转两次,旋转方向刚好同LR型相反。

AVL的旋转的更多相关文章

  1. 我的新发现:AVL树旋转的一个特性

    关于AVL树旋转的代码网络上铺天盖地. 一些经典的实现方法如下: AVLTree SingleLeftRotation(AVLTree A) { AVLTree B = A->left; A-& ...

  2. AVL树旋转

    什么是AVL树? AVL树是带有平衡条件的二叉查找树,一颗AVL树首先是二叉查收树(每个节点如果有左子树或右子树,那么左子树中数据小于该节点数据,右子树数据大于该节点数据),其次,AVL树必须满足平衡 ...

  3. (精)AVL树旋转共8种情况(涵盖所有考研的范围)

  4. PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由

    03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...

  5. AVL树的插入与删除

    AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1 ...

  6. 详解什么是平衡二叉树(AVL)(修订补充版)

    详解什么是平衡二叉树(AVL)(修订补充版) 前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查 ...

  7. 什么是平衡二叉树(AVL)

    前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都 ...

  8. AVL树总结

    定义:一棵AVL树或者是空树,或者是具有下列性质的二叉搜索树:它的左子树和右子树都是AVL树,且左右子树的高度之差的绝对值不超过1 AVL树失衡旋转总结: 假如以T为根的子树失衡.定义平衡因子为 H( ...

  9. AVL树(平衡二叉树)

    定义及性质 AVL树:AVL树是一颗自平衡的二叉搜索树. AVL树具有以下性质: 根的左右子树的高度只差的绝对值不能超过1 根的左右子树都是 平衡二叉树(AVL树) 百度百科: 平衡二叉搜索树(Sel ...

随机推荐

  1. Financial Management

    Financial Management 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 Larry graduated this year and finally ...

  2. XML学习总结

    什么是XML?XML指可扩展标记语言(EXtendsible Markup Language) XML的设计宗旨是传输数据,而不是显示数据. XML标签没有被预定义(html是预定义),XML里面您需 ...

  3. bzoj 4010: [HNOI2015]菜肴制作 拓扑排序

    题目链接: 题目 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory Limit: 512 MB 问题描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴 ...

  4. 能"干掉"苹果的中国"黑客"

    他是全球发现苹果漏洞最多的人,他曾穷的住在小黑屋,他经常接到国家安全部门的电话,他差点堵住周鸿祎的路,他是谁? 无名英雄 我们最终还是没有见到吴石本人,即便他的生意合伙人刘盛(化名)已经应承了帮我们牵 ...

  5. UVALive 6525

    二分图最大匹配 #include<cstdio> #include<iostream> #include<cstring> #define MAX 10010 us ...

  6. C#中Hashtable容器的了解与使用

    初涉Hashtable寄语 由于近段时间培训内容涉及到Hashtable方面的知识,由于培训仅仅起到一个引导的作用,加之以前又接触得少,因此对Hashtable这个东东蛮陌生,呵呵,今晚木有事儿就一起 ...

  7. DJANGO的requirements的运用

    这里记录一下我现在项目的requirements.pip文件,安装命令为: pip install -r requirements.pip 这样一来,所有依赖,全部搞定. Django== djang ...

  8. java小程序:求完全数

    如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3,而且6=1+2+3,所以6是完全数. 大约2200多年前,欧几里德提出:如果2n-1是质数 ...

  9. 在mybatis执行SQL语句之前进行拦击处理

    转载自:http://blog.csdn.net/hfmbook/article/details/41985853 比较适用于在分页时候进行拦截.对分页的SQL语句通过封装处理,处理成不同的分页sql ...

  10. HTML5入门2---js获取HTML元素的值

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...