莫队算法就是优化的暴力算法。莫队算法是要把询问先按左端点属于的块排序,再按右端点排序。只是预先知道了所有的询问。可以合理的组织计算每个询问的顺序以此来降低复杂度。

                          D. Powerful array

典型的莫队算法题

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <sstream>
#include <iomanip>
using namespace std;
typedef long long LL;
const int INF=0x4fffffff;
const int EXP=1e-;
const int MS=; int a[MS];
int cnt[*MS];
LL ans[MS]; struct node
{
int l,r;
int no,qid;
bool operator <(const node &a)const
{
return no<a.no||(no==a.no&&r<a.r);
}
}nodes[MS]; int n,SIZE;
LL res;
int L,R;
LL query(int x,int y,int flag)
{
if(flag)
{
for(int i=x;i<L;i++)
{
res+=(cnt[a[i]]<<|)*a[i];
cnt[a[i]]++;
}
for(int i=L;i<x;i++)
{
cnt[a[i]]--;
res-=(cnt[a[i]]<<|)*a[i];
}
for(int i=R+;i<=y;i++)
{
res+=(cnt[a[i]]<<|)*a[i];
cnt[a[i]]++;
}
for(int i=y+;i<=R;i++)
{
cnt[a[i]]--;
res-=(cnt[a[i]]<<|)*a[i];
}
}
else
{
for(int i=x;i<=y;i++)
{
res+=(cnt[a[i]]<<|)*a[i];
cnt[a[i]]++;
}
}
L=x;R=y;
return res;
} int main()
{
int Q;
scanf("%d%d",&n,&Q);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]); // 注意%d的速度远大于%I64d的速度
// 在大量数据输入时,能用%d就不要用%I64d,但千万要注意数据溢出
}
SIZE=sqrt(n+0.5);
for(int i=;i<Q;i++)
{
scanf("%d%d",&nodes[i].l,&nodes[i].r);
nodes[i].no=nodes[i].l/SIZE;
nodes[i].qid=i;
}
sort(nodes,nodes+Q);
memset(cnt,,sizeof(cnt));
res=;
for(int i=;i<Q;i++)
ans[nodes[i].qid]=query(nodes[i].l,nodes[i].r,i);
for(int i=;i<Q;i++)
printf("%I64d\n",ans[i]);
return ;
}

D. Powerful array 莫队算法或者说块状数组 其实都是有点优化的暴力的更多相关文章

  1. [Codeforces86D]Powerful array(莫队算法)

    题意:定义K[x]为元素x在区间[l,r]内出现的次数,那么它的贡献为K[x]*K[x]*x 给定一个序列,以及一些区间询问,求每个区间的贡献 算是莫队算法膜版题,不带修改的 Code #includ ...

  2. Codeforces 86D - Powerful array(莫队算法)

    题目链接:http://codeforces.com/problemset/problem/86/D 题目大意:给定一个数组,每次询问一个区间[l,r],设cnt[i]为数字i在该区间内的出现次数,求 ...

  3. codeforces 86D D. Powerful array(莫队算法)

    题目链接: D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input stan ...

  4. CodeForces - 86D D. Powerful array —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/86/D D. Powerful array time limit per test 5 seconds m ...

  5. codeforces 86D,Powerful array 莫队

    传送门:https://codeforces.com/contest/86/problem/D 题意: 给你n个数,m次询问,每次询问问你在区间l,r内每个数字出现的次数的平方于当前这个数的乘积的和 ...

  6. Yandex.Algorithm 2011 Round 2 D. Powerful array 莫队

    题目链接:点击传送 D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input ...

  7. CodeForces 86 D Powerful array 莫队

    Powerful array 题意:求区间[l, r] 内的数的出现次数的平方 * 该数字. 题解:莫队离线操作, 然后加减位置的时候直接修改答案就好了. 这个题目中发现了一个很神奇的事情,本来数组开 ...

  8. CodeForces - 86D Powerful array (莫队)

    题意:查询的是区间内每个数出现次数的平方×该数值的和. 分析:虽然是道莫队裸体,但是姿势不对就会超时.答案可能爆int,所以要开long long 存答案.一开始的维护操作,我先在res里减掉了a[p ...

  9. CodeForces - 220B Little Elephant and Array (莫队+离散化 / 离线树状数组)

    题意:N个数,M个查询,求[Li,Ri]区间内出现次数等于其数值大小的数的个数. 分析:用莫队处理离线问题是一种解决方案.但ai的范围可达到1e9,所以需要离散化预处理.每次区间向外扩的更新的过程中, ...

随机推荐

  1. 门户级UGC系统的技术进化路线——新浪新闻评论系统的架构演进和经验总结(转)

    add by zhj:先收藏了 摘要:评论系统是所有门户网站的核心标准服务组件之一.本文作者曾负责新浪网评论系统多年,这套系统不仅服务于门户新闻业务,还包括调查.投票等产品,经历了从单机到多机再到集群 ...

  2. windows平台下安装python的setuptools工具

    到下面的网址下载setuptools-0.6c11.win32-py2.7.exe http://pypi.python.org/pypi/setuptools#files 然后安装setuptool ...

  3. java线性表学习笔记(二)

    链表中的每一个元素都包含一个称为节点的结构,每向链表中增加一个元素,就会产生一个与之相关的节点,每个节点与它相邻的节点相连接(这是基础吧,不过在看c的时候没认真看,呼). 定义节点类如下(使用了泛型, ...

  4. 实时监控mysql数据库变化

    对于二次开发来说,很大一部分就找找文件和找数据库的变化情况 对于数据库变化.还没有发现比较好用的监控数据库变化监控软件. 今天,我就给大家介绍一个如何使用mysql自带的功能监控数据库变化 1.打开数 ...

  5. HDU 5707 Combine String (DP,LCS变形)

    题意:给定三个字符串,问你第三个是不是由第一个和第二个组成的. 析:当时比赛是没有做出来啊...一直WA,就是没有判断长度,第一个和第二个和是不是和第三个一样,这个忘记... 我们用d[i][j]表示 ...

  6. Linux下如何用vi编辑和保存文件

    vi是Linux终端下或控制台下常用的编辑器,基本的操作方式为:vi /路径/文件名 例如,vi /etc/fstab表示显示/etc/fstab文件的内容.使用键盘上的Page Up和Page Do ...

  7. 在WindowsServer2008服务器上安装SQLServer2008R2

    登录服务器 使用远程桌面登录Windows Server 2008   安装前的准备工作 下载SQL Server安装程序 下载Microsoft SQL Server2008 R2 RTM - Ex ...

  8. C#判断一个类中有无"指定名称"的方法

    C#中可以通过反射分析元数据来解决这个问题,示例代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 ...

  9. Linux 中使用 KVM

    from:http://www.php-oa.com/2010/02/22/ubutnu-kvm-vmware.html 听讲XEN很快就要从LINUX内核中去掉,redhat和Ubuntu也大力的在 ...

  10. 以静态变量保存 Spring ApplicationContext

    package com.thinkgem.jeesite.common.utils; import java.net.HttpURLConnection; import java.net.URL; i ...