Rikka with Sequence

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5828

Description


As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:
Yuta has an array A with n numbers. Then he makes m operations on it.
There are three type of operations:
1 l r x : For each i in [l,r], change A[i] to A[i]+x
2 l r : For each i in [l,r], change A[i] to
3 l r : Yuta wants Rikka to sum up A[i] for all i in [l,r]
It is too difficult for Rikka. Can you help her?

Input


The first line contains a number t(11000.
For each testcase, the first line contains two numbers n,m(1

Output


For each operation of type 3, print a lines contains one number -- the answer of the query.

Sample Input


1
5 5
1 2 3 4 5
1 3 5 2
2 1 4
3 2 4
2 3 5
3 1 5

Sample Output


5
6

Source


2016 Multi-University Training Contest 8


##题意:

对一个数组进行若干操作:
1. 将区间内的值都加x.
2. 将区间内的值都开平方.
3. 求区间内数的和.


##题解:

容易想到用线段树来维护,关键是如何处理操作二. 直接对每个数开平方肯定会超时.
考虑到开平方操作的衰减速度很快,一个数最多经过6次开平方操作就会到1.
那么随着操作的进行,区间内的数会趋于相同,恰好利用这个点来作剪枝.
对于树中的每个结点维护一个equal, 表示当前结点的子节点是否相等. (若相等就等于子节点的值,否则为-1).
当更新到某区间时,若区间内的值都相同,则只更新到这里即可,下面的结点利用pushdown来更新.

赛后数据被加强了,上述思路在HDU上已经AC不了了. sad....


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 101000
#define mod 100000007
#define inf 0x3f3f3f3f
#define mid(a,b) ((a+b)>>1)
#define IN freopen("in.txt","r",stdin);
using namespace std;

int n;

LL num[maxn];

struct Tree

{

int left,right;

LL lazy,sum,equl;

}tree[maxn<<2];

void build(int i,int left,int right)

{

tree[i].left=left;

tree[i].right=right;

tree[i].lazy=0;

if(left==right){
tree[i].sum = num[left];
tree[i].equl = num[left];
return ;
} int mid=mid(left,right); build(i<<1,left,mid);
build(i<<1|1,mid+1,right); tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;
tree[i].equl = tree[i<<1].equl==tree[i<<1|1].equl ? tree[i<<1].equl : -1;

}

void pushdown(int i)

{

if(tree[i].equl != -1) {

tree[i<<1].equl = tree[i].equl;

tree[i<<1|1].equl = tree[i].equl;

tree[i<<1].sum = (tree[i<<1].right-tree[i<<1].left+1)tree[i].equl;

tree[i<<1|1].sum = (tree[i<<1|1].right-tree[i<<1|1].left+1)
tree[i].equl;

tree[i].lazy = 0;

tree[i<<1].lazy = 0;

tree[i<<1|1].lazy = 0;

}

if(tree[i].lazy) {

tree[i<<1].lazy += tree[i].lazy;

tree[i<<1|1].lazy += tree[i].lazy;

tree[i<<1].sum += (tree[i<<1].right-tree[i<<1].left+1)tree[i].lazy;

tree[i<<1|1].sum += (tree[i<<1|1].right-tree[i<<1|1].left+1)
tree[i].lazy;

if(tree[i<<1].equl != -1) {

tree[i<<1].equl += tree[i].lazy;

tree[i<<1].lazy = 0;

}

if(tree[i<<1|1].equl != -1) {

tree[i<<1|1].equl += tree[i].lazy;

tree[i<<1|1].lazy = 0;

}

tree[i].lazy = 0;

}

}

void update(int i,int left,int right,LL d)

{

if(tree[i].leftleft&&tree[i].rightright)

{

tree[i].sum += (right-left+1)*d;

if(tree[i].equl == -1) tree[i].lazy += d;

else tree[i].equl += d;

return ;

}

pushdown(i);

int mid=mid(tree[i].left,tree[i].right);

if(right<=mid) update(i<<1,left,right,d);
else if(left>mid) update(i<<1|1,left,right,d);
else {
update(i<<1,left,mid,d);
update(i<<1|1,mid+1,right,d);
} tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;
tree[i].equl = tree[i<<1].equl==tree[i<<1|1].equl ? tree[i<<1].equl : -1;

}

void update_sqrt(int i,int left,int right)

{

if(tree[i].leftleft&&tree[i].rightright && tree[i].equl!=-1)

{

tree[i].equl = (LL)sqrt(tree[i].equl);

tree[i].sum = tree[i].equl * (tree[i].right-tree[i].left+1);

tree[i].lazy = 0;

return ;

}

pushdown(i);

int mid=mid(tree[i].left,tree[i].right);

if(right<=mid) update_sqrt(i<<1,left,right);
else if(left>mid) update_sqrt(i<<1|1,left,right);
else {
update_sqrt(i<<1,left,mid);
update_sqrt(i<<1|1,mid+1,right);
} tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;
tree[i].equl = tree[i<<1].equl==tree[i<<1|1].equl ? tree[i<<1].equl : -1;

}

LL query(int i,int left,int right)

{

if(tree[i].leftleft&&tree[i].rightright)

return tree[i].sum;

pushdown(i);

int mid=mid(tree[i].left,tree[i].right);

if(right<=mid) return query(i<<1,left,right);
else if(left>mid) return query(i<<1|1,left,right);
else return query(i<<1,left,mid)+query(i<<1|1,mid+1,right);

}

int main(int argc, char const *argv[])

{

//IN;

int t; cin >> t;
while(t--)
{
int m;
scanf("%d %d", &n,&m);
for(int i=1; i<=n; i++)
scanf("%lld", &num[i]);
build(1, 1, n); while(m--) {
int op, l, r;
scanf("%d %d %d", &op,&l,&r);
if(op == 1) {
LL x; scanf("%lld", &x);
update(1, l, r, x);
}
else if(op == 2) {
update_sqrt(1, l, r);
}
else if(op == 3) {
printf("%lld\n", query(1, l, r));
}
}
} return 0;

}

HDU 5828 Rikka with Sequence (线段树)的更多相关文章

  1. hdu 5828 Rikka with Sequence 线段树

    Rikka with Sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...

  2. HDU 5828 Rikka with Sequence (线段树+剪枝优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5828 给你n个数,三种操作.操作1是将l到r之间的数都加上x:操作2是将l到r之间的数都开方:操作3是 ...

  3. HDU 5828 Rikka with Sequence(线段树区间加开根求和)

    Problem DescriptionAs we know, Rikka is poor at math. Yuta is worrying about this situation, so he g ...

  4. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  5. 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence

    // 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence // 题意:三种操作,1增加值,2开根,3求和 // 思路:这题与HDU 4027 和HDU 5634 ...

  6. HDU 5828 Rikka with Sequence(线段树 开根号)

    Rikka with Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  7. hdu 4893 Wow! Such Sequence!(线段树)

    题目链接:hdu 4983 Wow! Such Sequence! 题目大意:就是三种操作 1 k d, 改动k的为值添加d 2 l r, 查询l到r的区间和 3 l r. 间l到r区间上的所以数变成 ...

  8. HDU 6089 Rikka with Terrorist (线段树)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6089 题解 这波强行维护搞得我很懵逼... 扫描线,只考虑每个点能走到左上方(不包括正上方,但包括正左 ...

  9. HDU 5634 Rikka with Phi 线段树

    题意:bc round 73 div1 D 中文题面 分析:注意到10^7之内的数最多phi O(log(n))次就会变成1, 因此可以考虑把一段相同的不为1的数缩成一个点,用平衡树来维护. 每次求p ...

随机推荐

  1. POJ1037A decorative fence(好dp)

    1037 带点组合的东西吧 黑书P257 其实我没看懂它写的嘛玩意儿 这题还是挺不错的 一个模糊的思路可能会好想一些 就是大体的递推方程 dp1[][]表示降序 dp2[][]表示升序 数组的含义为长 ...

  2. js 中 typeof 的使用

    js中的变量是松散类型(即弱类型)的,可以用来保存任何类型的数据. typeof 可以用来检测给定变量的数据类型,可能的返回值: 'undefined' --- 这个值未定义 'boolean' -- ...

  3. Python3 学习第三弹:异常情况如何处理?

    python 的处理错误的方式: 1> 断言 assert condition 相当于 if not condition: crash program 断言设置的目的就是因为与其让程序晚点崩溃, ...

  4. 给你的JAVA程序配置参数(Properties的使用)

    我们在写JAVA程序时,很多时候运行程序的参数是需要动态改变的 测试时一系列参数,运行时一系列参数 又或者数据库地址也需要配一套参数,以方便今后的动态部署 这些变量的初始化,我们在写小DEMO时完全可 ...

  5. NPAIRS框架的理解

    <The NPAIRS Computational Statistics Framework for Data Analysis in Neuroimaging> Strother. pe ...

  6. Java [Leetcode 101]Symmetric Tree

    题目描述: Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). ...

  7. (2)Spring集成Quartz定时任务框架介绍和Cron表达式详解

    在JavaEE系统中,我们会经常用到定时任务,比如每天凌晨生成前天报表,每一小时生成汇总数据等等.我们可以使用java.util.Timer结合java.util.TimerTask来完成这项工作,但 ...

  8. web项目Log4j日志输出路径配置问题

    问题描述:一个web项目想在一个tomcat下运行多个实例(通过修改war包名称的实现),然后每个实例都将日志输出到tomcat的logs目录下实例名命名的文件夹下进行区分查看每个实例日志,要求通过尽 ...

  9. Java中的DeskTop类使用介绍

    在Jdk1.6以后新增加了一个类--DeskTop,在JDK中它的解释是这样的: The Desktop class allows a Java application to launch assoc ...

  10. GCC 编译优化指南

    转自: http://www.jinbuguo.com/linux/optimize_guide.html GCC 编译优化指南 作者:金步国[www.jinbuguo.com] 版权声明 本文作者是 ...