Reverse Roads

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=93265#problem/E

Description

ICP city has an express company whose trucks run from the crossing S to the crossing T. The president of the company is feeling upset because all the roads in the city are one-way, and are severely congested. So, he planned to improve the maximum flow (edge disjoint paths) from the crossing S to the crossing T by reversing the traffic direction on some of the roads.

Your task is writing a program to calculate the maximized flow from S to T by reversing some roads, and the list of the reversed roads.

Input

The first line of a data set contains two integers N (2 \leq N \leq 300) and M (0 \leq M \leq {\rm min} (1\,000,\ N(N-1)/2)). N is the number of crossings in the city and M is the number of roads.

The following M lines describe one-way roads in the city. The i-th line (1-based) contains two integers X_i and Y_i (1 \leq X_i, Y_i \leq N,X_i \neq Y_i). X_i is the ID number (1-based) of the starting point of the i-th road and Y_i is that of the terminal point. The last line contains two integers S and T (1 \leq S, T \leq NS \neq T1-based).

The capacity of each road is 1. You can assume that i \neq j implies either X_i \neq X_j or Y_i \neq Y_j, and either X_i \neq Y_j or X_j \neq Y_i.

Output

In the first line, print the maximized flow by reversing some roads. In the second line, print the number R of the reversed roads. In each of the following R lines, print the ID number (1-based) of a reversed road. You may not print the same ID number more than once.

If there are multiple answers which would give us the same flow capacity, you can print any of them.

Sample Input

2 1
2 1
2 1

Sample Output

1
0

HINT

题意

给你一个图,然后图的边可以反转,反转的代价为1,问你保证最大流的情况下,使得反转的边最少

并且把反转的边输出出来

题解:

裸的费用流,特别裸……

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200500
#define mod 1001
#define eps 1e-9
#define pi 3.1415926
int Num;
//const int inf=0x7fffffff;
const ll inf=;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//*************************************************************************************
const int MAXN = ;
const int MAXM = ;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to, next, cap, flow, cost, id;
int x, y;
} edge[MAXM],HH[MAXN],MM[MAXN];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N, M;
char map[MAXN][MAXN];
void init()
{
N = MAXN;
tol = ;
memset(head, -, sizeof(head));
}
void addedge(int u, int v, int cap, int cost,int id)//左端点,右端点,容量,花费, 编号
{
edge[tol]. to = v;
edge[tol]. cap = cap;
edge[tol]. cost = cost;
edge[tol]. flow = ;
edge[tol]. next = head[u];
edge[tol].id = id;
head[u] = tol++;
edge[tol]. to = u;
edge[tol]. cap = ;
edge[tol]. cost = -cost;
edge[tol]. flow = ;
edge[tol]. next = head[v];
edge[tol].id = id;
head[v] = tol++;
}
bool spfa(int s, int t)
{
queue<int>q;
for(int i = ; i < N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
}
dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i != -; i = edge[i]. next)
{
int v = edge[i]. to;
if(edge[i]. cap > edge[i]. flow &&
dis[v] > dis[u] + edge[i]. cost )
{
dis[v] = dis[u] + edge[i]. cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t] == -) return false;
else return true;
}
//返回的是最大流, cost存的是最小费用
vector<int> ans;
int minCostMaxflow(int s, int t, int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i != -; i = pre[edge[i^]. to])
{
if(Min > edge[i]. cap - edge[i]. flow)
Min = edge[i]. cap - edge[i]. flow;
}
for(int i = pre[t]; i != -; i = pre[edge[i^]. to])
{
edge[i]. flow += Min;
edge[i^]. flow -= Min;
cost += edge[i]. cost * Min;
}
flow += Min;
}
return flow;
} vector<int> Q;
int main()
{
init();
int n=read(),m=read();
for(int i=;i<m;i++)
{
int x=read(),y=read();
addedge(x,y,,,i+);
addedge(y,x,,,i+);
}
int s=read(),t=read();
int ans1 = ,ans2 = ;
ans1 = minCostMaxflow(s,t,ans2); for(int i=;i<=n;i++)
{
for(int j = head[i]; j != -; j = edge[j]. next)
{
if(edge[j].flow == )
{
if(edge[j].cost)
{
Q.push_back(edge[j].id);
}
}
}
} printf("%d\n%d\n",ans1,ans2);
for(int i=;i<Q.size();i++)
printf("%d\n",Q[i]);
}

Aizu 2304 Reverse Roads 费用流的更多相关文章

  1. Aizu 2304 Reverse Roads(无向流)

    把有向图修改成无向图,并保证每条边的流量守恒并满足有向容量(即abs(flow(u,v) - flow(v,u)) <= 1)满足限制. 得到最大流,根据残流输出答案. 因为最后少了'\n'而W ...

  2. Aizu 2304 Reverse Roads

    原题链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2304 题意: 给你一个网络,其中每条边的容量是1,你可以通过调整边的方向 ...

  3. 【 UVALive - 2197】Paint the Roads(上下界费用流)

    Description In a country there are n cities connected by m one way roads. You can paint any of these ...

  4. 【BZOJ-3638&3272&3267&3502】k-Maximum Subsequence Sum 费用流构图 + 线段树手动增广

    3638: Cf172 k-Maximum Subsequence Sum Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 174  Solved: 9 ...

  5. Cyclic Tour HDUOJ 费用流

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  6. 【 UVALive - 5095】Transportation(费用流)

    Description There are N cities, and M directed roads connecting them. Now you want to transport K un ...

  7. BZOJ3638[Codeforces280D]k-Maximum Subsequence Sum&BZOJ3272Zgg吃东西&BZOJ3267KC采花——模拟费用流+线段树

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...

  8. 【CF280D】 k-Maximum Subsequence Sum ,线段树模拟费用流

    昨天考试被教育了一波.为了学习一下\(T3\)的科技,我就找到了这个远古时期的\(cf\)题(虽然最后\(T3\)还是不会写吧\(QAQ\)) 顾名思义,这个题目其实可以建成一个费用流的模型.我们用流 ...

  9. Codeforces 280D k-Maximum Subsequence Sum [模拟费用流,线段树]

    洛谷 Codeforces bzoj1,bzoj2 这可真是一道n倍经验题呢-- 思路 我首先想到了DP,然后矩阵,然后线段树,然后T飞-- 搜了题解之后发现是模拟费用流. 直接维护选k个子段时的最优 ...

随机推荐

  1. Python爬虫和情感分析简介

    摘要 这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果. 不同于其他专注爬虫技术的介绍,这里首先阐述爬取网络数据动机,接着 ...

  2. 2434: [Noi2011]阿狸的打字机

    ac自动机,bit,dfs序. 本文所有的stl都是因为自己懒得实现.   首先x在y里面出现,就意味y节点可以顺着fail回去. 反向建出一个fail数,然后搞出dfs序列.找出x对应的区间有多少个 ...

  3. 使用Unity3D自带动画系统制作下雨效果

    之前看了以前版本的unity3d demo AngryBots ,觉得里面的下雨效果不错,刚好前段时间学习了,写出来跟大家分享下,直接开始. 使用自带动画系统制作下雨效果. 先制作下雨的雨滴涟漪 步骤 ...

  4. RPi 2B SD read-only filesytem

    /**************************************************************************** * RPi 2B SD read-only ...

  5. LINQ,EF联合查询join

    public object GetListAdmin() { //return db_C56.Admins //   .Where(a => a.Status != "D") ...

  6. 异常处理 Exception

    一.异常类 1.在C#中所有的异常都是使用一个异常类型的示例对象表示的,这些异常类型都是继承自System.Exception类型,或者直接使用System.Exception类型的实例对象: 2.在 ...

  7. Kryo 为什么比 Hessian 快

    Kryo 是一个快速高效的Java对象图形序列化框架,它原生支持java,且在java的序列化上甚至优于google著名的序列化框架protobuf.由于 protobuf需要编写Schema文件(. ...

  8. HDU4612 Warm up 边双(重边)缩点+树的直径

    题意:一个连通无向图,问你增加一条边后,让原图桥边最少 分析:先边双缩点,因为连通,所以消环变树,每一个树边都是桥,现在让你增加一条边,让桥变少(即形成环) 所以我们选择一条树上最长的路径,连接两端, ...

  9. HDU 2121 Ice_cream’s world II 最小树形图

    这个题就是需要求整个有向带权图的最小树形图,没有指定根,那就需要加一个虚根 这个虚根到每个点的权值是总权值+1,然后就可以求了,如果求出来的权值大于等于二倍的总权值,就无解 有解的情况,还需要输出最根 ...

  10. ZOJ 3469 Food Delivery 区间DP

    这道题我不会,看了网上的题解才会的,涨了姿势,现阶段还是感觉区间DP比较难,主要是太弱...QAQ 思路中其实有贪心的意思,n个住户加一个商店,分布在一维直线上,应该是从商店开始,先向两边距离近的送, ...