Reverse Roads

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=93265#problem/E

Description

ICP city has an express company whose trucks run from the crossing S to the crossing T. The president of the company is feeling upset because all the roads in the city are one-way, and are severely congested. So, he planned to improve the maximum flow (edge disjoint paths) from the crossing S to the crossing T by reversing the traffic direction on some of the roads.

Your task is writing a program to calculate the maximized flow from S to T by reversing some roads, and the list of the reversed roads.

Input

The first line of a data set contains two integers N (2 \leq N \leq 300) and M (0 \leq M \leq {\rm min} (1\,000,\ N(N-1)/2)). N is the number of crossings in the city and M is the number of roads.

The following M lines describe one-way roads in the city. The i-th line (1-based) contains two integers X_i and Y_i (1 \leq X_i, Y_i \leq N,X_i \neq Y_i). X_i is the ID number (1-based) of the starting point of the i-th road and Y_i is that of the terminal point. The last line contains two integers S and T (1 \leq S, T \leq NS \neq T1-based).

The capacity of each road is 1. You can assume that i \neq j implies either X_i \neq X_j or Y_i \neq Y_j, and either X_i \neq Y_j or X_j \neq Y_i.

Output

In the first line, print the maximized flow by reversing some roads. In the second line, print the number R of the reversed roads. In each of the following R lines, print the ID number (1-based) of a reversed road. You may not print the same ID number more than once.

If there are multiple answers which would give us the same flow capacity, you can print any of them.

Sample Input

2 1
2 1
2 1

Sample Output

1
0

HINT

题意

给你一个图,然后图的边可以反转,反转的代价为1,问你保证最大流的情况下,使得反转的边最少

并且把反转的边输出出来

题解:

裸的费用流,特别裸……

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200500
#define mod 1001
#define eps 1e-9
#define pi 3.1415926
int Num;
//const int inf=0x7fffffff;
const ll inf=;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//*************************************************************************************
const int MAXN = ;
const int MAXM = ;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to, next, cap, flow, cost, id;
int x, y;
} edge[MAXM],HH[MAXN],MM[MAXN];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N, M;
char map[MAXN][MAXN];
void init()
{
N = MAXN;
tol = ;
memset(head, -, sizeof(head));
}
void addedge(int u, int v, int cap, int cost,int id)//左端点,右端点,容量,花费, 编号
{
edge[tol]. to = v;
edge[tol]. cap = cap;
edge[tol]. cost = cost;
edge[tol]. flow = ;
edge[tol]. next = head[u];
edge[tol].id = id;
head[u] = tol++;
edge[tol]. to = u;
edge[tol]. cap = ;
edge[tol]. cost = -cost;
edge[tol]. flow = ;
edge[tol]. next = head[v];
edge[tol].id = id;
head[v] = tol++;
}
bool spfa(int s, int t)
{
queue<int>q;
for(int i = ; i < N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
}
dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i != -; i = edge[i]. next)
{
int v = edge[i]. to;
if(edge[i]. cap > edge[i]. flow &&
dis[v] > dis[u] + edge[i]. cost )
{
dis[v] = dis[u] + edge[i]. cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t] == -) return false;
else return true;
}
//返回的是最大流, cost存的是最小费用
vector<int> ans;
int minCostMaxflow(int s, int t, int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i != -; i = pre[edge[i^]. to])
{
if(Min > edge[i]. cap - edge[i]. flow)
Min = edge[i]. cap - edge[i]. flow;
}
for(int i = pre[t]; i != -; i = pre[edge[i^]. to])
{
edge[i]. flow += Min;
edge[i^]. flow -= Min;
cost += edge[i]. cost * Min;
}
flow += Min;
}
return flow;
} vector<int> Q;
int main()
{
init();
int n=read(),m=read();
for(int i=;i<m;i++)
{
int x=read(),y=read();
addedge(x,y,,,i+);
addedge(y,x,,,i+);
}
int s=read(),t=read();
int ans1 = ,ans2 = ;
ans1 = minCostMaxflow(s,t,ans2); for(int i=;i<=n;i++)
{
for(int j = head[i]; j != -; j = edge[j]. next)
{
if(edge[j].flow == )
{
if(edge[j].cost)
{
Q.push_back(edge[j].id);
}
}
}
} printf("%d\n%d\n",ans1,ans2);
for(int i=;i<Q.size();i++)
printf("%d\n",Q[i]);
}

Aizu 2304 Reverse Roads 费用流的更多相关文章

  1. Aizu 2304 Reverse Roads(无向流)

    把有向图修改成无向图,并保证每条边的流量守恒并满足有向容量(即abs(flow(u,v) - flow(v,u)) <= 1)满足限制. 得到最大流,根据残流输出答案. 因为最后少了'\n'而W ...

  2. Aizu 2304 Reverse Roads

    原题链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2304 题意: 给你一个网络,其中每条边的容量是1,你可以通过调整边的方向 ...

  3. 【 UVALive - 2197】Paint the Roads(上下界费用流)

    Description In a country there are n cities connected by m one way roads. You can paint any of these ...

  4. 【BZOJ-3638&3272&3267&3502】k-Maximum Subsequence Sum 费用流构图 + 线段树手动增广

    3638: Cf172 k-Maximum Subsequence Sum Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 174  Solved: 9 ...

  5. Cyclic Tour HDUOJ 费用流

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  6. 【 UVALive - 5095】Transportation(费用流)

    Description There are N cities, and M directed roads connecting them. Now you want to transport K un ...

  7. BZOJ3638[Codeforces280D]k-Maximum Subsequence Sum&BZOJ3272Zgg吃东西&BZOJ3267KC采花——模拟费用流+线段树

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...

  8. 【CF280D】 k-Maximum Subsequence Sum ,线段树模拟费用流

    昨天考试被教育了一波.为了学习一下\(T3\)的科技,我就找到了这个远古时期的\(cf\)题(虽然最后\(T3\)还是不会写吧\(QAQ\)) 顾名思义,这个题目其实可以建成一个费用流的模型.我们用流 ...

  9. Codeforces 280D k-Maximum Subsequence Sum [模拟费用流,线段树]

    洛谷 Codeforces bzoj1,bzoj2 这可真是一道n倍经验题呢-- 思路 我首先想到了DP,然后矩阵,然后线段树,然后T飞-- 搜了题解之后发现是模拟费用流. 直接维护选k个子段时的最优 ...

随机推荐

  1. UVa 1637 (概率) Double Patience

    题意: 一共有9堆牌,每堆牌四张.每次可以取堆顶点数相同的两张牌,如果有多种方案则选取是随机的. 如果最后将所有牌取完,则视为游戏胜利,求胜利的概率. 分析: 用一个九元组表示状态,分别代表每堆牌剩余 ...

  2. 使用Zxing实现扫二维码描

    1.集成Zxing.bar 2.复制代码到项目中 3.修改 MipacActivityCapture.java  的扫描结果方法 handleDecode() /** * 处理扫描结果,实现活动页面跳 ...

  3. php网页显示正方形图片缩略图

    需求是这样的:原始图片的大小是不定的,类似800*600.1000*756,现有一个页面要以正方形(60*60)显示这些图片,注意:图片只能在内存处理,不能缩小后保存到本地磁盘. 解决办法: html ...

  4. Spring AOP--返回通知,异常通知和环绕通知

    在上篇文章中学习了Spring AOP,并学习了前置通知和后置通知.地址为:http://www.cnblogs.com/dreamfree/p/4095858.html 在本文中,将继续上篇的学习, ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9

    (1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal ...

  6. Selenium 使用方法小结

      基本介绍: Selenium工具专门为WEB应用程序编写的一个验收测试工具. Selenium的核心:browser bot,是用JAVASCRIPT编写的. Selenium工具有4种:Sele ...

  7. 【原】Storm 守护线程容错机制

    Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...

  8. 树-二叉平衡树AVL

    基本概念 AVL树:树中任何节点的两个子树的高度最大差别为1. AVL树的查找.插入和删除在平均和最坏情况下都是O(logn). AVL实现 AVL树的节点包括的几个组成对象: (01) key -- ...

  9. vim讲解

    文本编辑vi使用 最好使用vim,采用sudo apt-get install vim vi是Linux及类Unix系统中主流的命令行文本编辑器,功能极为强大,vim是增强版本的vim.Vim的高级地 ...

  10. NOIP2012 Vigenère 密码

    1.Vigenère 密码 (vigenere.cpp/c/pas) [问题描述] 16 世纪法国外交家 Blaise de Vigenère 设计了一种多表密码加密算法——Vigenère 密码.V ...