Aizu 2304 Reverse Roads 费用流
Reverse Roads
Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=93265#problem/E
Description
ICP city has an express company whose trucks run from the crossing S to the crossing T. The president of the company is feeling upset because all the roads in the city are one-way, and are severely congested. So, he planned to improve the maximum flow (edge disjoint paths) from the crossing S to the crossing T by reversing the traffic direction on some of the roads.
Your task is writing a program to calculate the maximized flow from S to T by reversing some roads, and the list of the reversed roads.
Input
The first line of a data set contains two integers N (2 \leq N \leq 300) and M (0 \leq M \leq {\rm min} (1\,000,\ N(N-1)/2)). N is the number of crossings in the city and M is the number of roads.
The following M lines describe one-way roads in the city. The i-th line (1-based) contains two integers X_i and Y_i (1 \leq X_i, Y_i \leq N,X_i \neq Y_i). X_i is the ID number (1-based) of the starting point of the i-th road and Y_i is that of the terminal point. The last line contains two integers S and T (1 \leq S, T \leq N, S \neq T, 1-based).
The capacity of each road is 1. You can assume that i \neq j implies either X_i \neq X_j or Y_i \neq Y_j, and either X_i \neq Y_j or X_j \neq Y_i.
Output
In the first line, print the maximized flow by reversing some roads. In the second line, print the number R of the reversed roads. In each of the following R lines, print the ID number (1-based) of a reversed road. You may not print the same ID number more than once.
If there are multiple answers which would give us the same flow capacity, you can print any of them.
Sample Input
2 1
2 1
2 1
Sample Output
1
0
HINT
题意
给你一个图,然后图的边可以反转,反转的代价为1,问你保证最大流的情况下,使得反转的边最少
并且把反转的边输出出来
题解:
裸的费用流,特别裸……
@)1%KBO0HM418$J94$1R.jpg)
代码:
//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200500
#define mod 1001
#define eps 1e-9
#define pi 3.1415926
int Num;
//const int inf=0x7fffffff;
const ll inf=;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//*************************************************************************************
const int MAXN = ;
const int MAXM = ;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to, next, cap, flow, cost, id;
int x, y;
} edge[MAXM],HH[MAXN],MM[MAXN];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N, M;
char map[MAXN][MAXN];
void init()
{
N = MAXN;
tol = ;
memset(head, -, sizeof(head));
}
void addedge(int u, int v, int cap, int cost,int id)//左端点,右端点,容量,花费, 编号
{
edge[tol]. to = v;
edge[tol]. cap = cap;
edge[tol]. cost = cost;
edge[tol]. flow = ;
edge[tol]. next = head[u];
edge[tol].id = id;
head[u] = tol++;
edge[tol]. to = u;
edge[tol]. cap = ;
edge[tol]. cost = -cost;
edge[tol]. flow = ;
edge[tol]. next = head[v];
edge[tol].id = id;
head[v] = tol++;
}
bool spfa(int s, int t)
{
queue<int>q;
for(int i = ; i < N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
}
dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i != -; i = edge[i]. next)
{
int v = edge[i]. to;
if(edge[i]. cap > edge[i]. flow &&
dis[v] > dis[u] + edge[i]. cost )
{
dis[v] = dis[u] + edge[i]. cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t] == -) return false;
else return true;
}
//返回的是最大流, cost存的是最小费用
vector<int> ans;
int minCostMaxflow(int s, int t, int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i != -; i = pre[edge[i^]. to])
{
if(Min > edge[i]. cap - edge[i]. flow)
Min = edge[i]. cap - edge[i]. flow;
}
for(int i = pre[t]; i != -; i = pre[edge[i^]. to])
{
edge[i]. flow += Min;
edge[i^]. flow -= Min;
cost += edge[i]. cost * Min;
}
flow += Min;
}
return flow;
} vector<int> Q;
int main()
{
init();
int n=read(),m=read();
for(int i=;i<m;i++)
{
int x=read(),y=read();
addedge(x,y,,,i+);
addedge(y,x,,,i+);
}
int s=read(),t=read();
int ans1 = ,ans2 = ;
ans1 = minCostMaxflow(s,t,ans2); for(int i=;i<=n;i++)
{
for(int j = head[i]; j != -; j = edge[j]. next)
{
if(edge[j].flow == )
{
if(edge[j].cost)
{
Q.push_back(edge[j].id);
}
}
}
} printf("%d\n%d\n",ans1,ans2);
for(int i=;i<Q.size();i++)
printf("%d\n",Q[i]);
}
Aizu 2304 Reverse Roads 费用流的更多相关文章
- Aizu 2304 Reverse Roads(无向流)
把有向图修改成无向图,并保证每条边的流量守恒并满足有向容量(即abs(flow(u,v) - flow(v,u)) <= 1)满足限制. 得到最大流,根据残流输出答案. 因为最后少了'\n'而W ...
- Aizu 2304 Reverse Roads
原题链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2304 题意: 给你一个网络,其中每条边的容量是1,你可以通过调整边的方向 ...
- 【 UVALive - 2197】Paint the Roads(上下界费用流)
Description In a country there are n cities connected by m one way roads. You can paint any of these ...
- 【BZOJ-3638&3272&3267&3502】k-Maximum Subsequence Sum 费用流构图 + 线段树手动增广
3638: Cf172 k-Maximum Subsequence Sum Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 174 Solved: 9 ...
- Cyclic Tour HDUOJ 费用流
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)Total ...
- 【 UVALive - 5095】Transportation(费用流)
Description There are N cities, and M directed roads connecting them. Now you want to transport K un ...
- BZOJ3638[Codeforces280D]k-Maximum Subsequence Sum&BZOJ3272Zgg吃东西&BZOJ3267KC采花——模拟费用流+线段树
题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...
- 【CF280D】 k-Maximum Subsequence Sum ,线段树模拟费用流
昨天考试被教育了一波.为了学习一下\(T3\)的科技,我就找到了这个远古时期的\(cf\)题(虽然最后\(T3\)还是不会写吧\(QAQ\)) 顾名思义,这个题目其实可以建成一个费用流的模型.我们用流 ...
- Codeforces 280D k-Maximum Subsequence Sum [模拟费用流,线段树]
洛谷 Codeforces bzoj1,bzoj2 这可真是一道n倍经验题呢-- 思路 我首先想到了DP,然后矩阵,然后线段树,然后T飞-- 搜了题解之后发现是模拟费用流. 直接维护选k个子段时的最优 ...
随机推荐
- Can't obtain the input stream from /docProps/app.xml
今天在做poi修改样式时,报了以下错误: Exception in thread "main" org.apache.poi.POIXMLException: java.io.IO ...
- poj3666
一道不错的dp题 就是最小修改代价,使序列变为一个非下降序或非上升(由于数据较弱直接求非下降即可,当然非上升非下降本质是一样的) 观察可得到,修改后得到的数列中的元素最后一定都在原序列中: 由此我们可 ...
- TortoiseSVN中分支和合并实践
使用svn几年了,一直对分支和合并敬而远之,一来是因为分支的管理不该我操心,二来即使涉及到分支的管理,也不敢贸然使用合并功能,生怕合并出了问题对团队造成不良影响,最主要的原因是,自己对分支的目的和合并 ...
- ViewPager 滑动页(一)
需求:滑动展示页,能够使用本地数据,及获取服务器数据进行刷新操作: 效果图: 实现分析: 1.目录结构: 代码实现: 1.fragment_main.xml <RelativeLayout xm ...
- HDU 3567 Eight II BFS预处理
题意:就是八数码问题,给你开始的串和结束的串,问你从开始到结束的最短且最小的变换序列是什么 分析:我们可以预处理打表,这里的这个题可以和HDU1430魔板那个题采取一样的做法 预处理打表,因为八数码问 ...
- NBUT1457 Sona 莫队算法
由于10^9很大,所以先离散化一下,把给你的这一段数哈希 时间复杂度O(nlogn) 然后就是分块莫队 已知[L,R],由于事先的离散化,可以在O(1)的的时间更新[l+1,r],[l,r+1],[l ...
- 《Python基础教程(第二版)》学习笔记 -> 第四章 字典
字典是Python中唯一内建的映射类型. 字典中的值并没有特殊的顺序,但是都存储在一个特定的键(Key)里.键可以是数字.字符串甚至是元组. 字典的使用 某些情况下,字典比列表更加适用: 表征游戏棋盘 ...
- 【打包成exe安装包文件发布你的程序】使用QT联系人管理系统的例子
[前言]在 QT数据库使用案列[联系人]-- 使用sqlite和QStringListModel 中,我们写了这个程序,如何将它打包成安装文件发给其他小伙伴呢? 我们使用 nsis-2.46-setu ...
- USB HID报告及报告描述符简介
在USB中,USB HOST是通过各种描述符来识别设备的,有设备描述符,配置描述符,接口描述符,端点描述符,字符串描述符,报告描述符等等.USB报告描述符(Report Descriptor)是HID ...
- Event Managers
Some PLF-based controls expose a convenient facility for temporarily disabling their events and for ...