Exploring Python Code Objects

https://late.am/post/2012/03/26/exploring-python-code-objects.html

Inspired by David Beazley's Keynote at PyCon, I've been digging around in code objects in Python lately. I don't have a particular axe to grind, nor some particular task to solve (yet?), so consider this post just some notes and ramblings that might be of interest (and my apologies if not).

Disclaimer: This post is about CPython version 2.7, though much of it is also likely true for other CPython versions (including 3.x). I make no claims to its accuracy or applicability to PyPy, Jython, IronPython, etc.

Step 0: What?

So first of all, what is a code object? Many people (particularly Python haters) claim that Python is an interpreted language, but all your Python code is actually compiled before it is ever executed. This goes even for code you write interactively in the Python shell. CPython implements a virtual machine that executes a stack-based bytecode. At runtime, executable things (functions, methods, modules, class bodies, lambdas, statements, expressions, etc) are all executed as bytecode by the Python virtual machine.

Code objects, then, are Python objects which represent some piece of bytecode, along with all that it needs to execute: a declaration of the expected argument types and counts, a list (not dictionary! more about which later) of locals, information about the source code from which the bytecode was generated (for debugging and printing stack traces), etc -- oh, and also (perhaps obviously), the bytecode itself, as a str (or, in Python3, bytes).

Though code objects represent some piece of executable code, they are not, by themselves, directly callable. To execute a code object, you must use the exec keyword or eval() function.

Step 1: Make some Code

Most of the time, you won't encounter code objects in ordinary Python programming. When you do, there's a very good chance that they were created and are managed for you by Python, without any special attention. In some cases, you might want to create code objects yourself, like in this post where we'll be experimenting with them:

>>> code_str = """
... print "Hello, world"
... """
>>> code_obj = compile(code_str, '<string>', 'exec')
>>> code_obj
<code object <module> at 0x1054c74b0, file "<string>", line 2>

Woohoo, your first code object!

The first argument to compile() is the string of Python code to be compiled, which should be obvious. The second defines the "filename" of the piece of code (here, as is conventional, we use <string> to indicate code attained from the interactive shell). The third is the type of compilation, which most often will be exec as you see here. The other choices for mode are eval, which is used for strings containing only a single expression, orsingle, in which the generated code object is expected to contain a single statement, whose return value is printed if it is not None (like in the interactive shell).

When using eval mode, if the code contains statements (as our example above does, it contains a printstatement), compilation will fail with a syntax error:

>>> code_str = """
... print "Hello, world"
... """
>>> code_obj = compile(code_str, '<string>', 'eval')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 2
print "Hello, world"
^
SyntaxError: invalid syntax

When using single, only a single statement is processed; multiple statements (or non-statements) will be ignored:

>>> code_str = """
... print "Hello, world"
... print "Goodbye, world"
... """
>>> code_obj = compile(code_str, '<string>', 'single')
>>> exec code_obj
Hello, world

What happened to my "goodbye"?

For the rest of the post, we'll stick with exec, which is the type of compilation Python does for you when importing modules.

Step 2: Open 'er Up

Let's go back to our first example, and have a look inside the code object to see what we have:

>>> code_str = """
... print "Hello, world"
... """
>>> code_obj = compile(code_str, '<string>', 'exec')
>>> dir(code_obj)
# dunder attributes excluded for readability
['co_argcount', 'co_cellvars', 'co_code', 'co_consts', 'co_filename',
'co_firstlineno', 'co_flags', 'co_freevars', 'co_lnotab', 'co_name',
'co_names', 'co_nlocals', 'co_stacksize', 'co_varnames']

These attributes are documented in the inspect module, but I'll highlight a few cool ones here:

First, we can see where our second argument to compile() ended up:

>>> code_obj.co_filename
'<string>'

And, perhaps surprisingly, our code represents an anonymous module (code compiled with exec mode is always treated as module-level code, though, of course, it can contain function or class definitions, or any other valid Python):

>>> code_obj.co_name
'<module>'

And, as we expect, a code object representing a Python module (that's effectively what our code string was -- a series of statements at the top-most level, that is, not indented at all) takes no arguments:

>>> code_obj.co_argcount
0
>>> code_obj.co_varnames
()

If we were to take a piece of code from a function which does have arguments, we'd see them here:

>>> def foo(x, y):
... print x, y
...
>>> foo.func_code
<code object foo at 0x1054b9830, file "<stdin>", line 1>
>>> foo.func_code.co_varnames
('x', 'y')
>>> foo.func_code.co_argcount
2

If you're curious, you can also see the raw bytecode that will be processed by the Python virtual machine:

>>> code_obj.co_code
'd\x00\x00GHd\x01\x00S'

I don't recommend trying to learn to read that directly, there's an easier way (hint: see the next section).

Finally, we have one constant object within scope, the string "Hello, world", which is printed by our code:

>>> code_obj.co_consts
('Hello, world', None)

Wait. Where's that None coming from?

A Detour into Code Disassembly

We can see exactly what's going on in our code object with the dis module, which disassembles code objects into a human readable series of bytecode instructions:

>>> dis.dis(code_obj)
2 0 LOAD_CONST 0 ('Hello, world')
3 PRINT_ITEM
4 PRINT_NEWLINE
5 LOAD_CONST 1 (None)
8 RETURN_VALUE

Reading disassembled Python code requires a bit of experience, so let me walk you through it. The LOAD_CONSTinstruction reads a value from the co_consts tuple, and pushes it onto the top of the stack. The PRINT_ITEMinstruction pops the top of the stack, and prints the string representation. PRINT_NEWLINE should be pretty self-explanatory.

Next we see the mysterious None. It turns out this is a bit of a quirk of the implementation details of the CPython virtual machine. Since function calls in Python (including "hidden" function calls, like those behind animport statement) are implemented with function calls in C in the Python virtual machine, modules actually have a return value -- this indicates to the Python virtual machine that execution of the module has completed, and control can be returned to the calling scope (i.e. the module in which the import statement appeared). I won't embarrass myself by trying to explain this further -- if you are interested, see Larry Hastingss PyCon presentation Stepping through CPython around 44:22 -- that video covers Python 3.x, but Python 2.7 does the same thing. If you're interested in this sort of implementation detail, then you should definitely watch the entirety of this video, and David Beazley's keynote as well.

Step 3: Interesting Internals

Many of the features we've looked at are clearly useful for a running Python virtual machine, but what about the human side of the story? What if we want to interactively debug code (using pdb or a similar tool), or get helpful, readable tracebacks from exceptions?

It turns out, code objects support this as well. As we've already seen, code objects indicate from which file they were generated, and this will obviously help in looking up source code; they also indicate the line number on which the source code for this code object begins:

>>> code_obj.co_firstlineno
2

And the mysterious co_lnotab attribute. To illustrate its purpose, we'll need a larger code snippet:

>>> code_str = """
... x = 1
... y = 2
... print x + y
... """
>>> code_obj = compile(code_str, '<string>', 'exec')
>>> code_obj.co_lnotab
'\x06\x01\x06\x01'

Hm, so what are we to make of this? Perhaps the dis module can help here again:

>>> dis.dis(code_obj)
2 0 LOAD_CONST 0 (1)
3 STORE_NAME 0 (x) 3 6 LOAD_CONST 1 (2)
9 STORE_NAME 1 (y) 4 12 LOAD_NAME 0 (x)
15 LOAD_NAME 1 (y)
18 BINARY_ADD
19 PRINT_ITEM
20 PRINT_NEWLINE
21 LOAD_CONST 2 (None)
24 RETURN_VALUE

At the far left of (some) lines, is the line number of the Python source from which this code object was created (notice that 2 here corresponds to the value of code_obj.co_firstlineno). The next column is the offset into the code of the bytecode instruction, 0 bytes for the first instruction, 3 bytes for the second, and so on. The third column is the instruction name itself, and the fourth is the argument to the instruction, if any, along with the value of the argument in parentheses.

Now we can put this together with the co_lnotab (which stands for "line number table", by the way) to see how Python makes sense of the code objects' relation to their original source code:

>>> code_obj.co_lnotab
'\x06\x01\x06\x01'

After a little tinkering and trial and error, I realized that this is a series of pairs of bytes: the first is a length offset into the bytecode (6 bytes, which advances us to the second LOAD_CONST as seen in our disassembly), followed by a number of source lines of code that the skipped instructions appeared on.

We can confirm this theory by slightly modifying our source code, recompiling, and examining the co_lnotabattribute of the resulting code object:

>>> code_str2 = """
... x = 1
...
... y = 2
... print x + y
... """
>>> code_obj2 = compile(code_str2, '<string>', 'exec')
>>> code_obj2.co_lnotab
'\x06\x02\x06\x01'

We've moved the second assignment down one line, so we see that in the second byte of co_lnotab, we are incrementing the "current line number" by two instead of by one.

We can also verify that the bytecode resulting from these two (slightly) different source codes is identical:

>>> code_obj2.co_code == code_obj.co_code
True

Since both the bytecode offset and line number offset at single (unsigned) bytes, one might wonder what happens if you have, say, 257 (or more) blank lines between statements in a Python source file? Let's see:

>>> thousand_blanks = '\n' * 1000
>>> code_str = """
... x = 1
... """ + thousand_blanks + """
... y = 2
... print x + y
... """
>>> code_obj = compile(code_str, '<string>', 'exec')
>>> code_obj.co_lnotab
'\x06\xff\x00\xff\x00\xff\x00\xec\x06\x01'

Since both the bytecode offsets and line offsets are, well, offsets, having large empty spaces just means that some of the interleaved offsets are 0-length offsets. Here we have a 6-byte offset into bytecode, followed by a 255-line offset into the source code, then a 0-byte offset into the bytecode, another 255 lines of source, another 0 bytes into the bytecode, yet another 255 lines of source, one more 0-byte offset into bytecode, and a final 236 lines of offset into the source code (then the usual, expected 6 bytes of bytecode and 1 line of source code for the final print statement). Neat!

Exploring Python Code Objects的更多相关文章

  1. Python integer objects implementation

    http://www.laurentluce.com/posts/python-integer-objects-implementation/ Python integer objects imple ...

  2. Python string objects implementation

    http://www.laurentluce.com/posts/python-string-objects-implementation/ Python string objects impleme ...

  3. 机器学习算法实现(R&Python code)

    Machine Learning Algorithms Machine Learning Algorithms (Python and R) 明天考试,今天就来简单写写机器学习的算法 Types Su ...

  4. How to run Python code from Sublime

    How to run Python Code from Sublime,and How to run Python Code with input from sublime Using Sublime ...

  5. Python code 提取UML

    Python是一门支持面向对象编程的语言,在大型软件项目中,我们往往会使用面向对象的特性去组织我们的代码,那有没有这样一种工具,可以帮助我们从已有代码中提取出UML图呢?答案是有的.以下,我们逐个介绍 ...

  6. PEP 8 – Style Guide for Python Code

    原文:PEP 8 – Style Guide for Python Code PEP:8 题目:Python代码风格指南 作者:Guido van Rossum, www.yszx11.cnBarry ...

  7. Change the environment variable for python code running

    python程序运行中改变环境变量: Trying to change the way the loader works for a running Python is very tricky; pr ...

  8. python code

    执行动态语句 执行字符串中的代码 http://www.cnblogs.com/fanweibin/p/5418817.html #!usr/bin/env python #coding:utf-8 ...

  9. Python——Code Like a Pythonista: Idiomatic Python

    Code Like a Pythonista: Idiomatic Python 如果你有C++基础,那学习另一门语言会相对容易.因为C++即面向过程,又面向对象.它很底层,能像C一样访问机器:它也很 ...

随机推荐

  1. CABasicAnimation 使用

    1. 基本使用 UIView * view = [[UIView alloc]initWithFrame:CGRectMake(50, 50, 50,50)]; view.backgroundColo ...

  2. 《Python 学习手册4th》 第九章 元组、文件及其他

    ''' 时间: 9月5日 - 9月30日 要求: 1. 书本内容总结归纳,整理在博客园笔记上传 2. 完成所有课后习题 注:“#” 后加的是备注内容 (每天看42页内容,可以保证月底看完此书) “重点 ...

  3. 【Opencv 小工具】鼠标选区信息获取

    有时候在目标跟踪的算法初始化工作时候,需要选区一个Rect区域,来表示要跟着的目标,所以有次小工具. 使用QT和opencv 编写 项目地址 https://github.com/wzyuliyang ...

  4. ios游戏开发--cocos2d学习(1)

    学习cocos2d需要一定的编程基础,最好了解objective-c的语法.至于下载和安装的过程网上有很多,这里不多介绍,直接进入项目的学习. 创建一个cocos2d项目,直接运行,效果如图: 左下角 ...

  5. C语言-简单哈希表(hash table)

    腾讯三面的时候,叫我写了个哈希表,当时紧张没写好···结果跪了··· 回来后粪发涂墙,赶紧写了一个! 什么都不说了···先让我到厕所里面哭一会··· %>_<% 果然现场发挥,以及基础扎实 ...

  6. ASP.NET MVC中的Json Binding和Validate

    引子:电子商务网站支付功能页面往往会有很多信息,对于这些信息的保存,往往是分步完成的,那么使用Ajax最合适不过了,比如其中的收货人信息模块.这些信息的新建和编辑保存都是用Ajax来完成的.那么有几种 ...

  7. bzoj 3171 [Tjoi2013]循环格(MCMF)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3171 [题意] 给定一个方向矩阵,要求改变最少的格子,使得任意一个点都在一个环中. [ ...

  8. Codeforces Round #365 (Div. 2) C - Chris and Road 二分找切点

    // Codeforces Round #365 (Div. 2) // C - Chris and Road 二分找切点 // 题意:给你一个凸边行,凸边行有个初始的速度往左走,人有最大速度,可以停 ...

  9. 使用Ant发布hadoop代码到服务器

    首先,搭建Ant环境: 1.1.下载antzip包,可以直接从官网下,也可以从我的csdn账号下载,这里我使用的Ant版本是:apache-ant-1.8.4-bin CSDN Ant 所需jar包下 ...

  10. Nginx的代理和反向代理

    什么是代理? 代理是为网络用户代理了来访问网络的,比如Google agent代理FQ. 什么是反向代理? 以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服 ...