51nod 1220 约数之和【莫比乌斯反演+杜教筛】
首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证
然后开始推:
\]
\]
\]
方便起见设\( f(n)=\sum_{i=1}^{n}i \)
\]
\]
\]
\]
这个样子显然可以用杜教筛了,但是注意到后面有两个求和式,可能会增大常数(但是也不会T啦),所以考虑这两个求和式的关系:
\]
\]
\]
\]
所以这两个式子是一样的!于是就变成了:
\]
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=1000005,inv2=500000004,mod=1e9+7;
int m,mb[N],q[N],tot;
long long n,s[N],ans,ha[N];
bool v[N];
long long slv(long long n)
{
return n*(n+1)%mod*inv2%mod;
}
long long wk(long long x)
{
if(x<=m)
return s[x];//cout<<x<<endl;
if(ha[n/x])
return ha[n/x];
long long re=1ll;
for(int i=2,la;i<=x;i=la+1)
{
la=x/(x/i);
re=(re-(slv(la)-slv(i-1))*wk(x/i)%mod)%mod;
}
return ha[n/x]=re;
}
long long clc(long long n)
{
long long re=0ll;
for(int i=1,la;i<=n;i=la+1)
{
la=n/(n/i);
re=(re+(la-i+1)*slv(n/i)%mod)%mod;
}
return re;
}
int main()
{
scanf("%lld",&n);
m=(int)ceil(pow((int)n,2.0/3));
mb[1]=1;
for(int i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
mb[i]=-1;
}
for(int j=1;j<=tot&&q[j]*i<=m;j++)
{
int k=i*q[j];
v[k]=1;
if(i%q[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
for(int i=1;i<=m;i++)
s[i]=(s[i-1]+i*mb[i])%mod;
//cout<<wk(102)<<" "<<wk(101)<<endl;
for(int i=1,la;i<=n;i=la+1)
{
la=n/(n/i);
long long ml=clc(n/i);//if(i!=1)cout<<i-1<<" "<<n/(i-1)<<endl<<la<<" "<<n/la<<endl;
ans=(ans+(wk(la)-wk(i-1))*ml%mod*ml%mod)%mod;
}
printf("%lld",(ans%mod+mod)%mod);
return 0;
}
51nod 1220 约数之和【莫比乌斯反演+杜教筛】的更多相关文章
- 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
- 牛客练习赛84F-牛客推荐系统开发之下班【莫比乌斯反演,杜教筛】
正题 题目链接:https://ac.nowcoder.com/acm/contest/11174/F 题目大意 给出\(n,k\)求 \[\sum_{i_1=1}^n\sum_{i_2=1}^n.. ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...
随机推荐
- Minimum Spanning Tree.prim/kruskal(并查集)
开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可) prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图 #include< ...
- python学习之-- redis模块操作 HASH
redis 操作 之 -Hash Hash 操作:hash在内存中的存储格式 name hash n1 ------> k1 -> v1 k2 -> v2 k3 -> v3hs ...
- 简论远程通信(RPC,Webservice,RMI,JMS的区别)
RPC(Remote Procedure Call Protocol)RPC使用C/S方式,采用http协议,发送请求到服务器,等待服务器返回结果.这个请求包括一个参数集和一个文本集,通常形成“cla ...
- ABP每次生成前都执行bundle设置
ABP项目每次编译mvc项目时都会执行bundle,比较耗时. 可以在项目文件(*.csproj)中发现设置了每前生成前执行的命令 <Target Name="PreBuild&quo ...
- topcoder srm 550
div1 250pt: 题意:有个机器人,从某一点出发,他只有碰到地形边缘或者碰到走过的点时才会改变运动方向,然后接着走,现在给出他的运动轨迹,判断他的运动是否合法,如果合法的话,那么整个地形的最小面 ...
- pip 安装速度慢解决办法
https://blog.csdn.net/liujingclan/article/details/50176597 https://blog.csdn.net/rytyy/article/detai ...
- js可视区域图片懒加载
可视区域图片懒加载 实现原理,页面滚动时获取需要懒加载的图片,判断此图片是否在可视区域内,是则设置图片data-src地址为src地址,加载图片. html下载地址 <!DOCTYPE html ...
- Cocos2dx 小技巧(十三)聊聊坐标系
一好友考上了空姐.她说:以后基本上不会回来了.等下次见面时请叫我白富美!尽管有点羡慕.但我依然不甘示弱回复:下次见面时请叫我高富帅! 未来,谁说得准呢? ------------------有段时间没 ...
- HDU1024 Max Sum Plus Plus —— DP + 滚动数组
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS ...
- git不同分支局部代码合并 git cherry-pick
cherry-pick 可以局部代码合并. cherry-pick不仅可以用在不同分支之间,还可以用在同一个分支上. 比如说你在某一个向某个分支中添加了一个功能,后来处于某种原因把它给删除了,然而后来 ...