洛谷题目链接

题目赋值出来格式有问题,所以我就只放题目链接了

下面为ac代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn=+;
ll a[maxn];//存放输入的数据
ll f[maxn];//用来递推
int main()
{
ll n;
cin>>n;
for(ll i=;i<=n;i++)
scanf("%lld",&a[i]);//输入数据 for(ll i=;i<=n;i++)
{
f[i]=max(a[i],a[i]+f[i-]);
} ll ans=f[];//先给ans赋初值为f[i] for(ll i=;i<=n;i++)//这里的意思是让ans等于f[1~n]中最大的
if(f[i]>ans)
ans=f[i]; cout<<ans<<endl; }

点击加号展开代码

文字讲解(代码中也有部分注释):

f[i]数组的意义是以a[i]为末尾的序列中最大的总和

比如说序列1 3 4

那么f[1]=1,f[2]=1+3=4,f[3]=1+3+4=8

然后如果从左往后递推,也就是f[i],i从1~n

f[i],可以等于a[i],也可以等于f[i-1]+a[i]

这两个要看谁大,所以要用max函数,具体的递推方程就是:

f[i]=max(a[i],a[i]+f[i-1])

比如说当f[i-1]=4,a[i]=-1,那么f[i]就肯定选和f[i-1]合并比较好

那么如果f[i-1]=-1,a[i]=4,此时f[i]=a[i]能保证f[i]是以a[i]为末尾的序列中最大的总和

类似的栗子还有好多,可以自己举栗子看看

接下来推荐一道类似的知识点题目:

最长不下降子序列

最长上升子序列(动态规划递推)

再贴一次代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn=+;
ll a[maxn];//存放输入的数据
ll f[maxn];//用来递推
int main()
{
ll n;
cin>>n;
for(ll i=;i<=n;i++)
scanf("%lld",&a[i]);//输入数据 for(ll i=;i<=n;i++)
{
f[i]=max(a[i],a[i]+f[i-]);
} ll ans=f[];//先给ans赋初值为f[i] for(ll i=;i<=n;i++)//这里的意思是让ans等于f[1~n]中最大的
if(f[i]>ans)
ans=f[i]; cout<<ans<<endl; }

最大子段和(洛谷P1115,动态规划递推)的更多相关文章

  1. NOIP 2008 传纸条(洛谷P1006,动态规划递推,滚动数组)

    题目链接:P1006 传纸条 PS:伤心,又想不出来,看了大神的题解 AC代码: #include<bits/stdc++.h> #define ll long long using na ...

  2. NOIP 2006 金明的预算方案(洛谷P1064,动态规划递推,01背包变形,滚动数组)

    一.题目链接:P1064 金明的预算方案 二.思路 1.一共只有五种情况 @1.不买 @2.只买主件 @3.买主件和附件1(如果不存在附件也要运算,只是这时附件的数据是0,也就是算了对标准的结果也没影 ...

  3. AC日记——最大子段和 洛谷 P1115

    题目描述 给出一段序列,选出其中连续且非空的一段使得这段和最大. 输入输出格式 输入格式: 输入文件maxsum1.in的第一行是一个正整数N,表示了序列的长度. 第2行包含N个绝对值不大于10000 ...

  4. 最长上升子序列(动态规划递推,LIS)

    1759:最长上升子序列 题目: 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的 ...

  5. 洛谷p1115 最大子段和

    题目链接: 最大子段和 题目分析: 动态规划O(n)求解,设f[i]表示以i为终点的最大子段和 分两种情况: 若f[i-1]>0,则显然f[i]=f[i-1]+a[i](a[i]必须包含在内) ...

  6. P1759 通天之潜水(不详细,勿看)(动态规划递推,组合背包,洛谷)

    题目链接:点击进入 题目分析: 简单的组合背包模板题,但是递推的同时要刷新这种情况使用了哪些物品 ac代码: #include<bits/stdc++.h> using namespace ...

  7. P2347 砝码称重(动态规划递推,背包,洛谷)

    题目链接:P2347 砝码称重 参考题解:点击进入 纪念我第一道没理解题意的题 ''但不包括一个砝码也不用的情况'',这句话我看成了每个砝码起码放一个 然后就做不出来了 思路: 1.这题数据很小,10 ...

  8. NOIP2000方格取数(洛谷,动态规划递推)

    先上题目: P1004 方格取数 下面上ac代码: ///如果先走第一个再走第二个不可控因素太多 #include<bits/stdc++.h> #define ll long long ...

  9. P1541 乌龟棋 题解(洛谷,动态规划递推)

    题目:P1541 乌龟棋 感谢大神的题解(他的写的特别好) 写一下我对他的代码的理解吧(哎,蒟蒻就这能这样...) 代码: #include<bits/stdc++.h> #define ...

随机推荐

  1. BZOJ 1037: [ZJOI2008]生日聚会Party 四维DP

    1037: [ZJOI2008]生日聚会Party Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1650  Solved: 971[Submit][ ...

  2. Python获得文件时间戳 异常访问监控 邮件定时提醒

    Python获得文件时间戳  异常访问监控 邮件定时提醒

  3. ubutu14.04无法使用sudo,也无法切换到root用户去解决问题怎么办?

    一不小心,修改了/etc/sudoers文件. 惨了. 无法使用sudo了,啥都干不成了. 最最关键的是,也无法用root登录. 本想着要重装系统了. 后来发现了神奇的ubuntu安全模式. 1.重启 ...

  4. bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 异或两次同一段路径的权值,就相当于没有走这段路径: 由此可以得到启发,对于不同的走法, ...

  5. STM32 的堆栈静态区

    STM32的分区从0x2000 0000开始.静态区,堆,栈. 所有的全局变量,包括静态变量之类的,全部存储在静态存储区.紧跟静态存储区之后的,是堆区(如没用到malloc,则没有该区),之后是栈区, ...

  6. 【158】◀▶ Linux-Bash学习

    鸟哥的 Linux 私房菜      Linux 的 26 个命令      Shell 脚本教程      Linux 命令大全 目录——按文件顺序: echo:显示变量内容 printf:格式化输 ...

  7. java运行代码连接mysql时提示:找不到类错误

    使用IntelliJ IDEA Community Edition进行代码编写.. 使用一下代码连接mysql时出现了:java.lang.ClassNotFoundException: com.my ...

  8. 统一微信公众号、小程序、APP的用户信息

     上次接手一个项目需要整合公众号.小程序以及APP的用户,查阅了微信文档以及一些作者的文章,中间踩了不少坑,在此记录一下解决的流程. 要点  实现统一信息的有以下几点:  1. 在微信开放平台绑定需要 ...

  9. 微信小程序获取自定义属性值

    写小程序的时候用到了自定义属性,特地来记录一下 特别是这个坑,必须得说一说 wxml <view class='box' bindtap='getValue'> <view clas ...

  10. layui 动态左树导航栏显示样式BUG规避

    先看问题现象: 使用 layui 的左树功能,先在html页面添加左树功能引入 <ul class="layui-nav layui-nav-tree layui-nav-side&q ...