Probabilistic interpretation,概率解释 
解释为何线性回归的损失函数会选择最小二乘

表示误差,表示unmodeled因素或随机噪声,真实的y和预测出来的值之间是会有误差的,因为我们不可能考虑到所有的影响结果的因素,比如前面的例子,我们根据面积和卧室的个数来预测房屋的价格,但是影响房屋价格的因素其实很多,而且有很多随机因素,比如买卖双方的心情,而根据中心极限定理,大量独立的随机变量的平均值是符合正态分布或高斯分布的 
所以这里对于由大量unmodeled因素导致的误差的分布,我们假设也符合高斯分布。因为你想想,大量独立随机变量大部分误差会互相抵消掉,而出现大量变量行为相似造成较大误差的概率是很小的。
可以写成,因为误差的概率和预测出是真实值的概率是一样的 

注意,这里:

不同于 :

表示这里θ不是一个随机变量,而是翻译成given x(i) and parameterized by θ  因为对于训练集,θ是客观存在的,只是当前还不确定,所以有:

这个很容易理解,真实值应该是以预测值为中心的一个正态分布,给出θ似然性的定义:
给定训练集X和参数θ,预测结果等于真正结果的概率,等同于该θ为真实θ的可能性(似然性)。这里probability和likelihood有什么不同,答案没有什么不同。但是对于数据使用probability,对于参数使用likelihood,故最大似然法(maximum likelihood),就是找出L(θ)最大的那个θ,即概率分布最fit训练集的那个θ。

继续推导,把上面的式子带入,得到 

实际为了数学计算方便,引入log likelihood,

可以看到,最终我们从L(θ)的最大似然估计,推导出损失函数J(θ),最小二乘法:

Hence,maximizing l(θ) gives the same answer as minimizing

所以结论为,最小二乘回归被认为是进行最大似然估计的一个很自然的方法 。

机器学习-Probabilistic interpretation的更多相关文章

  1. 回归问题中代价函数选择的概率解释(Probabilistic interpretation)

    在我们遇到回归问题时,例如前面提到的线性回归,我们总是选择最小而成作为代价函数,形式如下: 这个时候,我们可能就会有疑问了,我们为什么要这样来选择代价函数呢?一种解释是使我们的预测值和我们训练样本的真 ...

  2. Probabilistic interpretation

    Under the previous probabilistic assumptions on the data, least-squares regression corresponds to fi ...

  3. 贝叶斯方法(Bayesian approach) —— 一种概率解释(probabilistic interpretation)

    1. Bayesian approach 对于多项式拟合问题,我们可通过最小二乘(least squares)的方式计算得到模型的参数,最小二乘法又可视为最大似然(maximum likelihood ...

  4. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  5. cs229 斯坦福机器学习笔记(一)-- 入门与LR模型

    版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...

  6. Stanford机器学习笔记-2.Logistic Regression

    Content: 2 Logistic Regression. 2.1 Classification. 2.2 Hypothesis representation. 2.2.1 Interpretin ...

  7. Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降

    网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...

  8. ###《Machine Learning》by Andrew NG

    点击查看Evernote原文. #@author: gr #@date: 2014-10-17 #@email: forgerui@gmail.com Fundamental 一. 矩阵的迹.秩 矩阵 ...

  9. Markov Random Fields

    We have seen that directed graphical models specify a factorization of the joint distribution over a ...

随机推荐

  1. 2 Angular 2 的核心概念

    一.组件(Components): 组件是构成 Angular 应用的基础和核心,它是一个模板的控制类,用于处理应用和逻辑页面的视图部分.组件知道如何渲染自己及配置依赖注入,并通过一些由属性和方法组成 ...

  2. jquery源码学习笔记三:jQuery工厂剖析

    jquery源码学习笔记二:jQuery工厂 jquery源码学习笔记一:总体结构 上两篇说过,query的核心是一个jQuery工厂.其代码如下 function( window, noGlobal ...

  3. call function

    1 call递归扩展变量 本质上仍然是变量扩展,等价于$(),只不过扩展的时候带了参数,$(call xxx)返回的是xxx扩展之后的值.参数依次赋值给$(1),$(2)......,但是参数要在赋值 ...

  4. Mac mysql 运行sql文件中文乱码的问题

    别再傻傻的改什么mysql的编码格式了. 是.sql文件的编码有问题,把sql文件的编码格式改成utf-8就行了. mac怎么修改呢? vscode最爽了. 用vscode打开.sql文件,然后点右下 ...

  5. BZOJ2049:Cave 洞穴勘测 (LCT入门)

    辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴.假如两个洞穴可 ...

  6. 【HDU 1561】 The More,The better

    [题目链接] 点击打开链接 [算法] 树形背包 注意是一棵森林 [代码] #include<bits/stdc++.h> using namespace std; #define MAXN ...

  7. jquery cloudzoom 3.0,magiczoom 放大镜插件 破解 移除版权信息

    jquery Cloud Zoom一款放大镜插件.但是无奈 官方下载的始终有版权信息,因此想到如下方法去掉版权信息,测试可行! 官方网址:http://www.starplugins.com/clou ...

  8. RestTemplate中headers中添加Host不生效

    在使用restTemplate访问内网接口时,不打算指host,支持ip访问,所以我们需要再header中指定host.但经调试,发现HttpURLConnection中Host无法覆盖.解决方案: ...

  9. ES6躬行记(23)——Promise的静态方法和应用

    一.静态方法 Promise有四个静态方法,分别是resolve().reject().all()和race(),本节将着重分析这几个方法的功能和特点. 1)Promise.resolve() 此方法 ...

  10. bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】

    参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...