Painting Storages


Time Limit: 2 Seconds      Memory Limit: 65536 KB


There is a straight highway with N storages alongside it labeled by 1,2,3,...,N. Bob asks you to paint all storages with two colors: red and blue. Each storage will
be painted with exactly one color.

Bob has a requirement: there are at least M continuous storages (e.g. "2,3,4" are 3 continuous storages) to be painted with red. How many ways can you paint all storages under
Bob's requirement?

Input

There are multiple test cases.

Each test case consists a single line with two integers: N and M (0<N, M<=100,000).

Process to the end of input.

Output

One line for each case. Output the number of ways module 1000000007.

Sample Input

4 3

Sample Output

3

Author: ZHAO, Kui

Contest: ZOJ Monthly, June 2013

解题思路:

这道题和省赛上的一道非常像啊。

假设曾经做过,省赛的时候也不会没思路。

。。

这道题单纯用组合是不行的。。。

题意为:用红蓝两种颜色给N个仓库(标号1—N)涂色。要求至少有M个连续的仓库涂成红色,问一共能够的涂色方案。

结果模1000000007

dp[i] 为 前i个仓库满足至少M个连续仓库为红色的方法数。

那么dp[M]肯定为1。 dp[0,1,2,3,......M-1] 均为0.

在求dp[i]的时候,有两种情况

一。前i-1个仓库涂色已经符合题意,那么第i个仓库涂什么颜色都能够,有 dp[i] = 2*dp[i-1] ;(有可能超出范围,别忘了mod)

二。加上第i个仓库涂为红色才构成M个连续仓库为红色。那么 区间 [i-m+1, i]。为红色,第i-m个仓库肯定是蓝色并且从1到i-m-1个仓库肯定是不符合题意的涂色。所以用1到i-m-1的仓库的全部涂色方法 2^(i-m-1) 减去符合题意的方法数dp[i-m-1] 。所以方法数为2^(i-m-1)
- dp[i-m-1]

代码:

#include <iostream>
#include <string.h>
using namespace std;
const int mod=1000000007;
const int maxn=100005;
int power[maxn+1];
int dp[maxn];//前i个仓库满足m个仓库为红色的方法数
int n,m; void getPower()//预处理出2的多少次方
{
power[0]=1;
for(int i=1;i<=maxn;i++)
power[i]=power[i-1]*2%mod;
} int main()
{
getPower();
while(cin>>n>>m)
{
memset(dp,0,sizeof(dp));
dp[m]=1;
for(int i=m+1;i<=n;i++)
dp[i]=(dp[i-1]*2%mod+power[i-m-1]-dp[i-m-1])%mod;
cout<<dp[n]<<endl;
}
return 0;
}

[ACM] ZOJ 3725 Painting Storages (DP计数+组合)的更多相关文章

  1. ZOJ 3725 Painting Storages(DP+排列组合)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5048 Sample Input 4 3 Sample Output ...

  2. ZOJ - 3725 Painting Storages

    Description There is a straight highway with N storages alongside it labeled by 1,2,3,...,N. Bob ask ...

  3. zoj 3725 - Painting Storages(动归)

    题目要求找到至少存在m个连续被染成红色的情况,相对应的,我们求至多有m-1个连续的被染成红色的情况数目,然后用总的数目将其减去是更容易的做法. 用dp来找满足条件的情况数目,, 状态:dp[i][0] ...

  4. ZOJ-3725 Painting Storages DP

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3725 n个点排列,给每个点着色,求其中至少有m个红色的点连续的数 ...

  5. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  6. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

  7. 动态规划(DP计数):HDU 5116 Everlasting L

    Matt loves letter L.A point set P is (a, b)-L if and only if there exists x, y satisfying:P = {(x, y ...

  8. 【POJ1952】逢低吸纳 dp+计数

    题目大意:给定一个有 N 个数的序列,求其最长下降子序列的长度,并求出有多少种不同的最长下降子序列.(子序列各项数值相同视为同一种) update at 2019.4.3 题解:求最长下降子序列本身并 ...

  9. Tetrahedron(Codeforces Round #113 (Div. 2) + 打表找规律 + dp计数)

    题目链接: https://codeforces.com/contest/166/problem/E 题目: 题意: 给你一个三菱锥,初始时你在D点,然后你每次可以往相邻的顶点移动,问你第n步回到D点 ...

随机推荐

  1. axure笔记--内部框架交互链接

    内部框架的作用: 1.可以引用站点地图的页面 2.可以引用视频(链接视频)(axure中没有媒体控件) 3.可以引用本地文件 4.引用网页(注意:1.超链接地址要加上http://   2.内部框架大 ...

  2. cocos2d中的anchorPoint属性详解

    原文地址:http://www.tuicool.com/articles/ANVjMj 1> anchorPoint对position的影响 anchorPoint的作用就是相当于确定在子节点的 ...

  3. 排序算法C语言实现——冒泡、快排、堆排对比

    对冒泡.快排.堆排这3个算法做了验证,结果分析如下: 一.结果分析 时间消耗:快排 < 堆排 < 冒泡. 空间消耗:冒泡O(1) = 堆排O(1) < 快排O(logn)~O(n) ...

  4. JavaScript正则表达式-断言

    (?=reg_pattern):正前向断言 只有当字符串右侧出现匹配reg_pattern的字符时才匹配正则表达式. str = "img1.jpg,img2.jpg,img3.bmp&qu ...

  5. Java面试——String、StringBuider以及StringBuffer的区别和使用场景

    1.  String.StringBuider.StringBuffer的区别  String是不可变的对象,因此在每次对String类型进行改变的时候,都会生成一个新的String对象,然后将指针指 ...

  6. iOS 唯一标示符 卸载后安装值不变

    Vindor标示符 (IDFV-identifierForVendor) 这种叫法也是在iOS 6中新增的,不过获取这个IDFV的新方法被添加在已有的UIDevice类中.跟advertisingId ...

  7. MarkdownPad 2 HTML 渲染错误解决办法

    MarkdownPad 2 HTML 渲染错误解决办法 1. 安装SDK工具包 Awesomium 1.6.6 SDK 2. 安装渲染插件Microsoft’s DirectX End-User Ru ...

  8. 雅图CAD

    今天培训了雅图CAD. 由辅助线确定下一步的位置,是个好思想.

  9. Git 常用命令整理(持续更新)

    #配置 git config --global user.name "Your Name" git config --global user.email "email@e ...

  10. 洛谷P3758 - [TJOI2017]可乐

    Portal Description 给出一张\(n(n\leq30)\)个点\(m(m\leq100)\)条边的无向图.初始时有一个可乐机器人在点\(1\),这个机器人每秒会做出以下三种行为之一:原 ...