POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Memory Limit: 65536K
Accepted: 7392
Description
Given a big integer number, you are required to find out whether it's a prime number.
Input
The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 2^54).
Output
For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.
Sample Input
2
5
10
Sample Output
Prime
2
Source
POJ Monthly
题目大意:T组数据,对于输入的N,若N为素数,输出"Prime",否则输出N的最小素因子
思路:由于N的规模为2^54所以普通的素性推断果断过不了。
要用Miller Rabin素数測试来做。
而若N不为素数,则须要对N进行素因子分解。由于N为大数,考虑用Pollar Rho整数分解来做。
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#define MAX_VAL (pow(2.0,60))
//miller_rabbin素性測试
//__int64 mod_mul(__int64 x,__int64 y,__int64 mo)
//{
// __int64 t;
// x %= mo;
// for(t = 0; y; x = (x<<1)%mo,y>>=1)
// if(y & 1)
// t = (t+x) %mo;
//
// return t;
//} __int64 mod_mul(__int64 x,__int64 y,__int64 mo)
{
__int64 t,T,a,b,c,d,e,f,g,h,v,ans;
T = (__int64)(sqrt(double(mo)+0.5));
t = T*T - mo;
a = x / T;
b = x % T;
c = y / T;
d = y % T;
e = a*c / T;
f = a*c % T;
v = ((a*d+b*c)%mo + e*t) % mo;
g = v / T;
h = v % T;
ans = (((f+g)*t%mo + b*d)% mo + h*T)%mo;
while(ans < 0)
ans += mo;
return ans;
}
__int64 mod_exp(__int64 num,__int64 t,__int64 mo)
{
__int64 ret = 1, temp = num % mo;
for(; t; t >>=1,temp=mod_mul(temp,temp,mo))
if(t & 1)
ret = mod_mul(ret,temp,mo); return ret;
} bool miller_rabbin(__int64 n)
{
if(n == 2)
return true;
if(n < 2 || !(n&1))
return false;
int t = 0;
__int64 a,x,y,u = n-1;
while((u & 1) == 0)
{
t++;
u >>= 1;
}
for(int i = 0; i < 50; i++)
{
a = rand() % (n-1)+1;
x = mod_exp(a,u,n);
for(int j = 0; j < t; j++)
{
y = mod_mul(x,x,n);
if(y == 1 && x != 1 && x != n-1)
return false;
x = y;
}
if(x != 1)
return false;
}
return true;
}
//PollarRho大整数因子分解
__int64 minFactor;
__int64 gcd(__int64 a,__int64 b)
{
if(b == 0)
return a;
return gcd(b, a % b);
} __int64 PollarRho(__int64 n, int c)
{
int i = 1;
srand(time(NULL));
__int64 x = rand() % n;
__int64 y = x;
int k = 2;
while(true)
{
i++;
x = (mod_exp(x,2,n) + c) % n;
__int64 d = gcd(y-x,n);
if(1 < d && d < n)
return d;
if(y == x)
return n;
if(i == k)
{
y = x;
k *= 2;
}
}
} void getSmallest(__int64 n, int c)
{
if(n == 1)
return;
if(miller_rabbin(n))
{
if(n < minFactor)
minFactor = n;
return;
}
__int64 val = n;
while(val == n)
val = PollarRho(n,c--);
getSmallest(val,c);
getSmallest(n/val,c);
}
int main()
{
int T;
__int64 n;
scanf("%d",&T);
while(T--)
{
scanf("%I64d",&n);
minFactor = MAX_VAL;
if(miller_rabbin(n))
printf("Prime\n");
else
{
getSmallest(n,200);
printf("%I64d\n",minFactor);
}
}
return 0;
}
POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】的更多相关文章
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- Miller Rabin素数检测
#include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- C语言单元測试
C语言单元測试 对于敏捷开发来说,单元測试不可缺少,对于Java开发来说,JUnit非常好,对于C++开发,也有CPPUnit可供使用,而对于传统的C语言开发,就没有非常好的工具可供使用,能够找到的有 ...
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
随机推荐
- poj2217 Secretary 后缀数组
#include <iostream> #include <cstring> #include <string> #include <cstdio> u ...
- Leetcode 372.超级次方
超级次方 你的任务是计算 ab 对 1337 取模,a 是一个正整数,b 是一个非常大的正整数且会以数组形式给出. 示例 1: 输入: a = 2, b = [3] 输出: 8 示例 2: 输入: a ...
- DIV垂直/水平居中2(DIV宽度和高度是动态的)
<!doctype html><html><head><meta charset="utf-8"><title>块元素D ...
- BZOJ 1007 [HNOI2008]水平可见直线 ——计算几何
用了trinkle的方法,半平面交转凸包. 写了一发,既没有精度误差,也很好写. #include <map> #include <ctime> #include <cm ...
- BZOJ 3110 [Zjoi2013]K大数查询 ——树套树
[题目分析] 外层区间线段树,内层是动态开点的权值线段树. SY神犇说树套树注重的是内外层的数据结构的选择问题,果然很重要啊. 动态开点的实现方法很好. [代码] #include <cstdi ...
- [luoguP3317] [SDOI2014]重建(矩阵树定理)
传送门 为了搞这个题又是学行列式,又是学基尔霍夫矩阵. 矩阵树定理 本题题解 无耻地直接发链接,反正我也是抄的题解.. #include <cstdio> #include <cma ...
- 刷题总结——卡牌配对(bzoj4205网络流)
题目: Description 现在有一种卡牌游戏,每张卡牌上有三个属性值:A,B,C.把卡牌分为X,Y两类,分别有n1,n2张. 两张卡牌能够配对,当且仅当,存在至多一项属性值使得两张卡牌该项属性值 ...
- 洛谷 [P2953] 牛的数字游戏
SG搜索 n的范围在可以接受的范围内,SG搜索即可 #include <iostream> #include <cstdio> #include <cstring> ...
- 矩阵乘法 BZOJ 2738
矩阵乘法 [问题描述] 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. [输入格式] 第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵: ...
- oracle怎么查看表空间里有哪些表
select TABLE_NAME,TABLESPACE_NAME from dba_tables where TABLESPACE_NAME='表空间名'; 注意:表空间名要大写