\(\\\)

Description


有 \(n\) 种货物和 \(n\) 个仓库,开始第 \(i\) 个仓库里有 \(a_{ij}\) 个第 \(j\) 种货物。

现在要让每种货物都只放到一个仓库里,且一个仓库只放一种货物。

货物将在仓库之间移动,总代价就是移动的所有货物的总重。

现不指定哪种货物放到哪个仓库里,求最小总代价。

  • \(n\le 150,a_{ij}\le 100\)

\(\\\)

Solution


一开始的想法是把限制加到流量上,后来发现不行。

为什么呢?首先这题的建图肯定是一侧货物一侧仓库。

如果是货物 \(\to\) 仓库,我们无法确定最后哪个仓库放哪种货物,所以仓库向汇点的流量无法限制。

如果是仓库 \(\to\) 货物,我们又无法确定每个仓库向每个货物的流量了,因为我们不知道这种货物是否放回到这个仓库里,进而代价会算多 \((\) 有的边费用可能是 \(0\) 没有算上 \()\) 。

\(\\\)

因此我们要把代价加到费用上。

考虑此题的限制:

  • 每种货物只能放到一个仓库里
  • 每个仓库只能放一种货物

于是原点连出和连入汇点的所有边流量都是 \(1\) ,代表如上限制。

我们预处理 \(sum_i\) 表示第 \(i\) 种货物的总量。

\(\\\)

如果源连货物,货物指向仓库,仓库连汇,则建图方式:

因为是货物向仓库连边,那么如果这一货物要放到这一仓库,原本在这一仓库的此货物就不用产生代价,其他的这一货物都要产生代价。

货物 \(j\) 向仓库 \(i\) 要连一条流量为 \(1\) ,费用为 \(sum_j-a_{ij}\) 的边。

\(\\\)

如果源连仓库,仓库指向货物,货物连汇,则建图方式:

此时所谓的货物,其实是代表的存放这一货物的仓库。

而仓库连向货物,代价就应该是令这一仓库作为存放这一货物的代价。

显然费用和原来思考方式相同。

\(\\\)

Code


将第二种建图方式的代码放在了注释里。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 310
#define M 50010
#define R register
#define gc getchar
#define inf 1000000000
using namespace std; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} int n,m,s,t,tot=1,maxn; int hd[N],pre[N],id[N],dis[N],w[N][N],sum[N]; struct edge{int f,w,to,nxt;}e[M]; inline void add(int u,int v,int f,int w){
e[++tot].to=v; e[tot].w=w;
e[tot].f=f; e[tot].nxt=hd[u]; hd[u]=tot;
} bool vis[N]; queue<int> q; inline bool spfa(){
for(R int i=1;i<=maxn;++i) dis[i]=inf,vis[i]=0;
dis[s]=0; q.push(s);
while(!q.empty()){
int u=q.front();
q.pop(); vis[u]=0;
for(R int i=hd[u],v;i;i=e[i].nxt)
if(e[i].f&&(dis[v=e[i].to]>dis[u]+e[i].w)){
dis[v]=dis[u]+e[i].w;
pre[v]=u; id[v]=i;
if(!vis[v]) vis[v]=1,q.push(v);
}
}
return dis[t]<inf;
} inline int mcmf(){
int res=0,tmp;
while(spfa()){
tmp=inf;
for(R int i=t;i!=s;i=pre[i]) tmp=min(tmp,e[id[i]].f);
for(R int i=t;i!=s;i=pre[i]){
e[id[i]].f-=tmp; e[id[i]^1].f+=tmp;
}
res+=tmp*dis[t];
}
return res;
} int main(){
n=rd();
s=0; maxn=t=(n<<1)+1;
for(R int i=1;i<=n;++i){
add(s,i,1,0); add(i,s,0,0);
add(n+i,t,1,0); add(t,n+i,0,0);
for(R int j=1;j<=n;++j) w[i][j]=rd();
}
for(R int i=1;i<=n;++i)
for(R int j=1;j<=n;++j) sum[j]+=w[i][j];
for(R int i=1;i<=n;++i)
for(R int j=1;j<=n;++j){
add(j,n+i,1,sum[j]-w[i][j]);
add(n+i,j,0,w[i][j]-sum[j]);
}
/*
for(R int i=1;i<=n;++i)
for(R int j=1;j<=n;++j){
add(i,n+j,1,sum[j]-w[i][j]);
add(n+j,i,0,w[i][j]-sum[j]);
}
*/
printf("%d\n",mcmf());
return 0;
}

[ SDOI 2006 ] 仓库管理员的烦恼的更多相关文章

  1. [SDOI2006]仓库管理员的烦恼

    题目描述 仓库管理员M最近一直很烦恼,因为他的上司给了他一个艰难的任务:让他尽快想出一种合理的方案,把公司的仓库整理好. 已知公司共有n个仓库和n种货物,由于公司进货时没能很好的归好类,使得大部分的仓 ...

  2. 解题:ZJOI 2006 皇帝的烦恼

    禁止DP,贪心真香 有一个比较明显的贪心思路是让每个人和距离为$2$(隔着一个人)的人尽量用一样的,这样只需要扫一遍然后对每对相邻的人之和取最大值即可.但是当人数为奇数时这样就会出锅,因为最后一个人和 ...

  3. [ SDOI 2006 ] 保安站岗

    \(\\\) Description 给出一棵 \(n\) 个节点以 \(1\) 为根的树,一个节点的覆盖半径是 \(1\) ,点有点权 \(val_x\) . 选择一些点,使得点权和最小,同时每个节 ...

  4. [SDOI2006] 仓库管理员的烦恼 - 二分图最大权匹配

    最小化代价,即最大化"本土"货物的数量 于是就是个二分图最大权匹配裸题 #include <bits/stdc++.h> using namespace std; #d ...

  5. 【热门技术】EventBus 3.0,让事件订阅更简单,从此告别组件消息传递烦恼~

    一.写在前面 还在为时间接收而烦恼吗?还在为各种组件间的消息传递烦恼吗?EventBus 3.0,专注于android的发布.订阅事件总线,让各组件间的消息传递更简单!完美替代Intent,Handl ...

  6. BZOJ 2006: [NOI2010]超级钢琴

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2613  Solved: 1297[Submit][Statu ...

  7. CPU阿甘之烦恼

    转自“码农翻身”公共号,原文地址CPU阿甘之烦恼 总结:(程序加载到内存运行的演变过程) 内存存放程序.OS负责加载程序到内存.CPU负责运行内存中的程序 1.串行:加载一个完整程序到内存,CPU运行 ...

  8. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  9. [bzoj1935][shoi2007]Tree 园丁的烦恼(树状数组+离线)

    1935: [Shoi2007]Tree 园丁的烦恼 Time Limit: 15 Sec  Memory Limit: 357 MBSubmit: 980  Solved: 450[Submit][ ...

随机推荐

  1. excel 合并 单元格内容

    刚刚有人问怎么合并单元格内容,正好excel 我也不会,顺便查查记录一下 1.假设有两个单元格如下:           单元格1 单元格2           2. 在一个空白单元格输入 =( 这代 ...

  2. 新IOS编程语言 Swift 新编译器Xcode6

    https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_ ...

  3. 【面试】iOS 开发面试题(一)

      1. #import 跟#include 又什么差别,@class呢, #import<> 跟 #import""又什么差别? 答:#import是Objectiv ...

  4. 【v2.x OGE教程 16】 Modifier使用相关

    OGE引擎的改动器功能非常强大,为我们提供了丰富的改动器的实现类,能够改动实体的属性.提供了移动.旋转.缩放.透明.自己定义序列.同步.循环等功能,并且改变的效果能够当场生效.也能够在某一个时间段内生 ...

  5. Kernel Live-patching (by quqi99)

    作者:张华  发表于:2016-02-27 版权声明:能够随意转载.转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明 ( http://blog.csdn.net/quqi99 ) GC ...

  6. LINQ实现

    public static IEnumerable<TSource> MyWhere<TSource>(     this IEnumerable<TSource> ...

  7. 【跟我一步一步学Struts2】——登陆样例

    本篇博客通过一个简单的登陆小样例来入门,简单了解一下struts2是怎样工作的: 第一步引入Jar包: commons-fileupload-1.2.1.jar,文件上传 commons-loggin ...

  8. Codeforces Round #324 (Div. 2)C. Marina and Vasya set

                                                          C. Marina and Vasya   Marina loves strings of ...

  9. FFmpeg解码视频帧为jpg图片保存到本地

    FFmpeg解码视频帧为jpg图片保存到本地 - CSDN博客 https://blog.csdn.net/qq_28284547/article/details/78151635

  10. java8-接口变化-默认方法-静态方法

    Java 8中允许接口中包含具有具体实现的方法,该方法称为 “默认方法”,默认方法使用 default 关键字修饰. default String getName(){ return "哈哈 ...